Skip to main content
Log in

A simple and rapid determination of Al(III) in natural water samples using dispersive liquid–liquid microextraction after complexation with a novel antipyrine-based Schiff base reagent

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The purpose of this study is the development of a novel strategy for the determination of Al3+ ions using the combination of dispersive liquid–liquid microextraction (DLLME) and UV–Vis spectrophotometry. The method is grounded in the complexation between a novel antipyrine-based Schiff base reagent (EHMP) and Al3+ ions. Aluminum concentrations were detected using UV–Vis spectrophotometry at 260 nm and this technique was optimized using the absorbance value of EHMP-Al complex. pH, mixing period, type and volume of organic solvent, etc. were optimized stepwise in order to find out optimum experimental conditions. The limit of detection and the limit of quantification values for the improved analytical method were to be estimated 0.31 and 1.03 μmol.L−1, respectively. The new strategy was successfully performed to define Al3+ ions in natural water samples with RSD values (84.01–107.71%) and recovery values (0.01–0.09%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting this study of this manuscript are publicly available within the article and its suporting information file.

References

  • Altunay, N., & Katin, K. P. (2020). Ultrasonic-assisted supramolecular solvent liquid-liquid microextraction for determination of manganese and zinc at trace levels in vegetables: Experimental and theoretical studies. Journal of Molecular Liquids, 310, 113192. https://doi.org/10.1016/j.molliq.2020.113192

    Article  CAS  Google Scholar 

  • Arain, M. S., Arain, S. A., Kazi, T. G., Afridi, H. I., Ali, J., Naeemulllah, et al. (2015). Temperature controlled ionic liquid-based dispersive micro-extraction using two ligands, for determination of aluminium in scalp hair samples of Alzheimer’s patients: A multivariate study. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 137, 877–885. https://doi.org/10.1016/j.saa.2014.08.068

    Article  CAS  Google Scholar 

  • Arpa, Ç., & Arıdaşır, I. (2019). Ultrasound assisted ion pair based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegeta. Food Chemistry, 284, 16–22. https://doi.org/10.1016/j.foodchem.2019.01.092

    Article  CAS  Google Scholar 

  • Aydin, D. (2020). A novel turn on fluorescent probe for the determination of Al3+ and Zn2+ ions and its cells applications. Talanta, 210(November 2019). https://doi.org/10.1016/j.talanta.2019.120615

  • Aydin, D., Gunay, I. B., Elmas, S. N. K., Savran, T., Arslan, F. N., Sadi, G., & Yilmaz, I. (2020). A simple and sensitive fluorescent sensor platform for Al3+ sensing in aqueous media and monitoring through combined PET and ESIPT mechanisms: Practical applications in drinking water and bio–imaging. New Journal of Chemistry, 1–12. https://doi.org/10.1039/D0NJ02487B

  • Aydin, D., Elmas, S. N. K., Akin Geyik, G., Bostanci, A., Arslan, F. N., & Savran, T., et al. (2021). 1,8-Naphthalimide appended propiolate-based fluorescent sensor for selective detection of cysteine over glutathione and homocysteine in living cells. New Journal of Chemistryhttps://doi.org/10.1039/D1NJ03317D

  • Barreto, J. A., de Assis, R. D. S., Cassella, R. J., & Lemos, V. A. (2019). A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples. Talanta, 193, 23–28. https://doi.org/10.1016/j.talanta.2018.09.082

    Article  CAS  Google Scholar 

  • Baytar, O., Ömer, Ş., Horoz, S., & Kutluay, S. (2020). High-performance gas-phase adsorption of benzene and toluene on activated carbon: response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies. Environmental Science and Pollution Research, 26191–26210.

  • Bulut, V. N., Arslan, D., Ozdes, D., Soylak, M., & Tufekci, M. (2010). Preconcentration, separation and spectrophotometric determination of aluminium(III) in water samples and dialysis concentrates at trace levels with 8-hydroxyquinoline–cobalt(II) coprecipitation system. Journal of Hazardous Materials, 182(1), 331–336. https://doi.org/10.1016/j.jhazmat.2010.06.034

    Article  CAS  Google Scholar 

  • Cao, J., Xie, Q., Di, H., Liang, Y., Ma, G., Yi, Z., et al. (2020). Molecular complex based dispersive liquid–liquid microextraction for simultaneous HPLC determination of eight phenolic compounds in water samples. Journal of Molecular Liquids, 309, 113115. https://doi.org/10.1016/j.molliq.2020.113115

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association.

    Google Scholar 

  • Dil, E. A., Ghaedi, M., Asfaram, A., Zare, F., Mehrabi, F., & Sadeghfar, F. (2017). Comparison between dispersive solid-phase and dispersive liquid–liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental d. Ultrasonics Sonochemistry, 39, 374–383. https://doi.org/10.1016/j.ultsonch.2017.05.011

    Article  CAS  Google Scholar 

  • Erulaş, A. F., Şaylan, M., Topal, S., Zaman, B. T., Bakırdere, E. G., & Bakırdere, S. (2020). A new microextraction method for trace nickel determination in green tea samples: Solventless dispersion based dispersive liquid-liquid microextraction combined with slotted quartz tube- flame atomic absorption spectrophotometry. Journal of Food Composition and Analysis, 94, 103–623. https://doi.org/10.1016/j.jfca.2020.103623

    Article  CAS  Google Scholar 

  • Farajbakhsh, F., Amjadi, M., Manzoori, J., Ardalan, M. R., & Jouyban, A. (2016). Microextraction Methods for Preconcentration of Aluminium in Urine Samples. Pharmaceutical Sciences, 22(2), 87–95. https://doi.org/10.15171/PS.2016.15

  • Faraji, M., Noormohammadi, F., & Adeli, M. (2020). Preparation of a ternary deep eutectic solvent as extraction solvent for dispersive liquid-liquid microextraction of nitrophenols in water samples. Journal of Environmental Chemical Engineering, 8(4), 103948. https://doi.org/10.1016/j.jece.2020.103948

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, A. K., & Maheshwari, G. (2007). Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta, 72(4), 1469–1473. https://doi.org/10.1016/j.talanta.2007.01.064

    Article  CAS  Google Scholar 

  • Hafez, E. M., El Sheikh, R., Fathallah, M., Sayqal, A. A., & Gouda, A. A. (2019). An environment-friendly supramolecular solvent-based liquid–phase microextraction method for determination of aluminum in water and acid digested food samples prior to spectrophotometry. Microchemical Journal, 150, 104100. https://doi.org/10.1016/j.microc.2019.104100

    Article  CAS  Google Scholar 

  • Khan, S., Kazi, T. G., Baig, J. A., Afridi, H. I., & Kolachi, N. F. (2011a). Separation/preconcentration methods for the determination of aluminum in dialysate solution and scalp hair samples of kidney failure patients. Biological Trace Element Research, 144(1), 205–216. https://doi.org/10.1007/s12011-011-9070-5

    Article  CAS  Google Scholar 

  • Khan, S., Kazi, T. G., Kolachi, N. F., Baig, J. A., Afridi, H. I., & Shah, F. (2011b). A simple separation/preconcentration method for the determination of aluminum in drinking water and biological sample. Desalination, 281, 215–220. https://doi.org/10.1016/j.desal.2011.07.063

    Article  CAS  Google Scholar 

  • Koçoğlu, E. S., Yılmaz, Ö., Bakırdere, E. G., et al. (2021). Quantification of palladium in wastewater samples by matrix-matching calibration strategy assisted deep eutectic solvent based microextraction. Environmental Monitoring and Assessment, 193, 344. https://doi.org/10.1007/s10661-021-09146-3

    Article  CAS  Google Scholar 

  • Kruger, P. C., & Parsons, P. J. (2007). Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems. Spectrochimica Acta Part b: Atomic Spectroscopy, 62(3), 288–296. https://doi.org/10.1016/j.sab.2006.12.005

    Article  CAS  Google Scholar 

  • Moghaddam, M. A., Mahvi, A. H., Asgari, A. R., et al. (2008). Determination of aluminum and zinc in Iranian consumed tea. Environ Monit Assess, 144, 23–30. https://doi.org/10.1007/s10661-007-0006-7

    Article  CAS  Google Scholar 

  • Mostafavi, B., Feizbakhsh, A., Konoz, E., & Faraji, H. (2020). Salting-out strategy for speciation of selenium in aqueous samples using centrifuge-less dispersive liquid-liquid microextraction. Environmental Monitoring and Assessment, 192(10), 662. https://doi.org/10.1007/s10661-020-08609-3

    Article  CAS  Google Scholar 

  • Nejad, M. G., Faraji, H., & Moghimi, A. (2017). Monitoring Pb in aqueous samples by using low density solvent on air-assisted dispersive liquid-liquid microextraction coupled with UV-vis spectrophotometry. Bulletin of Environmental Contamination and Toxicology, 98(4), 546–555. https://doi.org/10.1007/s00128-016-2010-5

    Article  CAS  Google Scholar 

  • Nunes, M. C., dos Carlos, F., Fuganti, O., Galindo, D. D. M., De Boni, L., Abate, G., & Nunes, F. S. (2020). Turn-on fluorescence study of a highly selective acridine-based chemosensor for Zn2+ in aqueous solutions. Inorganica Chimica Acta, 499, 119191.

    Article  CAS  Google Scholar 

  • Panhwar, A. H., Kazi, T. G., Naeemullah, Afridi, H. I., Shah, F., Arain, M. B., & Arain, S. A. (2016). Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method. Environmental Toxicology and Pharmacology, 43, 242–247. https://doi.org/10.1016/j.etap.2016.03.017

    Article  CAS  Google Scholar 

  • Panhwar, A. H., Tuzen, M., & Kazi, T. G. (2018). Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: Multivariate study. Talanta, 178, 588–593. https://doi.org/10.1016/j.talanta.2017.09.079

    Article  CAS  Google Scholar 

  • Rahnama, R., & Najafi, M. (2016). The use of rapidly synergistic cloud point extraction for the separation and preconcentration of trace amounts of Ni (II) ions from food and water samples coupling with flame atomic absorption spectrometry determination. Environmental Monitoring and Assessment, 188, 150. https://doi.org/10.1007/s10661-016-5146-1

    Article  CAS  Google Scholar 

  • Rasulov, O., Zacharová, A., & Schwarz, M. (2017). Determination of total mercury in aluminium industrial zones and soil contaminated with red mud. Environmental Monitoring and Assessment, 189(8). https://doi.org/10.1007/s10661-017-6079-z

  • Rezaee, M., Yamini, Y., Khanchi, A., Faraji, M., & Saleh, A. (2010). A simple and rapid new dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. Journal of Hazardous Materials, 178(1), 766–770. https://doi.org/10.1016/j.jhazmat.2010.02.006

    Article  CAS  Google Scholar 

  • Şahan, S., Saçmacı, Ş, Ülgen, A., Kartal, Ş, & Şahin, U. (2015). A new automated system for the determination of Al(III) species in dialysis concentrates by electrothermal atomic absorption spectrometry using a combination of chelating resin. Microchemical Journal, 122, 57–62. https://doi.org/10.1016/j.microc.2015.04.013

    Article  CAS  Google Scholar 

  • Sang, H., Liang, P., & Du, D. (2008). Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection. Journal of Hazardous Materials, 154(1), 1127–1132. https://doi.org/10.1016/j.jhazmat.2007.11.018

    Article  CAS  Google Scholar 

  • Santos, A. P., Korn, M. D. G. A., & Lemos, V. A. (2017). Methods of liquid phase microextraction for the determination of cadmium in environmental samples. Environmental Monitoring and Assessment, 189(9), 444. https://doi.org/10.1007/s10661-017-6151-8

    Article  CAS  Google Scholar 

  • Şaylan, M., Zaman, B. T., Bakırdere, E. G., & Bakırdere, S. (2020). Determination of trace nickel in chamomile tea and coffee samples by slotted quartz tube-flame atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction method using a Schiff base ligand. Journal of Food Composition and Analysis, 88, 103454. https://doi.org/10.1016/j.jfca.2020.103454

    Article  CAS  Google Scholar 

  • Šeruga, M., Grgić, J., & Mandić, M. (1994). Aluminium content of soft drinks from aluminium cans. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 198(4), 313–316. https://doi.org/10.1007/BF01193181

    Article  Google Scholar 

  • Soylak, M., Ozdemir, B., & Yilmaz, E. (2020). An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV–vis spectrophotometry. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 243, 118806. https://doi.org/10.1016/j.saa.2020.118806

    Article  CAS  Google Scholar 

  • Sun, M., & Wu, Q. (2010). Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 176(1), 901–905. https://doi.org/10.1016/j.jhazmat.2009.11.121

    Article  CAS  Google Scholar 

  • Sweileh, J. A., Misef, K. Y., El-Sheikh, A. H., & Sunjuk, M. S. (2014). Development of a new method for determination of aluminum (Al) in Jordanian foods and drinks: Solid phase extraction and adsorption of Al3+-d-mannitol on carbon nanotubes. Journal of Food Composition and Analysis, 33(1), 6–13. https://doi.org/10.1016/j.jfca.2013.10.002

    Article  CAS  Google Scholar 

  • Ulusoy, H. İ, Gürkan, R., Aksoy, Ü., & Akçay, M. (2011). Development of a cloud point extraction and preconcentration method for determination of trace aluminum in mineral waters by FAAS. Microchemical Journal, 99(1), 76–81. https://doi.org/10.1016/j.microc.2011.03.013

    Article  CAS  Google Scholar 

  • Unsal, Y. E., Soylak, M., & Tuzen, M. (2015). Ultrasound-assisted ionic liquid-based dispersive liquid–liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV–visible spectrophotometry. Environmental Monitoring and Assessment, 187(4), 203. https://doi.org/10.1007/s10661-015-4427-4

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, D., Xu, X., & Zhang, L. (2016). Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging. Food Chemistry, 197, 754–760. https://doi.org/10.1016/j.foodchem.2015.11.042

    Article  CAS  Google Scholar 

  • Wang, X., Si, Y., Mao, X., Li, Y., Yu, J., Wang, H., & Ding, B. (2013). Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. The Analyst, 138(17), 5129–5136. https://doi.org/10.1039/C3AN00812F

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriye Nihan Karuk Elmas.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

10661_2021_9701_MOESM1_ESM.docx

Supplementary file1 (DOCX 449 KB) Fig. S1 IR spectrum of the improved chemosensor (EHMP) and Fig. S2 1H-NMR spectrum of EHMP, Fig. S3. The volume of the buffer solution on the recovery values of Al3+ (N=3), Fig. S4. Selectivity study of EHMP on the recovery values of Al3+ (N=3), Table S1. Dixon’s test utilized to the repeatability of the proposed method Table S2. Intermediate precision analysis of the proposed method for Al3+ verified by the HorRat ratio, Table S3. Al3+ monitoring in natural spring water samples by EHMP, Table S4. Al3+ monitoring in natural spring water samples by ICP–OES

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuk Elmas, S.N. A simple and rapid determination of Al(III) in natural water samples using dispersive liquid–liquid microextraction after complexation with a novel antipyrine-based Schiff base reagent. Environ Monit Assess 194, 47 (2022). https://doi.org/10.1007/s10661-021-09701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09701-y

Keywords

Navigation