Skip to main content

Advertisement

Log in

Inter-estuarine and seasonal to decadal variations of heavy metal pollution in the Gulf of Cambay, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Toxic heavy metals adsorbed preferentially onto suspended sediments enter our food chain by bio-assimilation in coastal ocean organisms. To decipher metal pollution status in the Gulf of Cambay (food hub of India) under rising anthropogenic pressure, we present seasonal abundances of Ti, Cr, Co, Ni, Cu, Zn, Cd, and Pb in > 150 samples of suspended sediments (> 0.45 µm) collected in four seasons (2016–2017) from two large estuaries (Narmada and Tapi). The suspended sediments of both the estuaries generally show low heavy metal pollution (Igeo < 1). The hotspots of moderate-to-high pollution of Pb (Igeo < 4), Cd (Igeo < 3), and Zn (Igeo < 2) are found at salinity < 2, and those of Co (Igeo < 2) at salinity ~ 20–30 in the Tapi estuary during the non-monsoon seasons indicating their decoupled sources in Surat. The PLI values show no or little seasonality in the overall metal pollution status of both the estuaries. A comparison with the literature data suggests that suspended sediments efficiently capture active metal pollution in Indian estuaries. Furthermore, a recent decline (2004–2017) in estuarine metal pollution in the Gulf of Cambay found in this study could be due to enhanced organic matter supplies by enhanced urban sewage discharge and/or more trapping of contaminated riverine sediments upstream of the newly built large dam reservoirs counteracting the growth of anthropogenic metal inputs in the Narmada and Tapi watersheds. The data scarcity of heavy metal concentrations in suspended sediments limits reporting unambiguously the current pollution status of other major Indian estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Bhuvan (https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source: a, Sarin et al. (1979); b, Subramanian et al. (1985); c, Datta and Subramanian (1998); d, Kumar Sarkar et al. (2004); e, Banerjee et al. (2012); f, Samanta et al. (2017); g, Ramesh et al. (1990); h, Ramesh et al. (1989); i, Biksham and Subramanian (1988); j, Biksham et al. (1991); k, Ray et al. (2006); l, Krupadam et al. (2007); m, Seralathan (1987), Seralathan and Seetaramaswamy (1987); n, Subramanian et al. (1989); o, Dekov et al. (1998); p, Ramanathan et al. (1993); q, Dhanakumar et al. (2013); r, Alagarsamy (2006); s, Shynu et al. (2012); t, Borole et al. (1982); u, Sharma and Subramanian (2010); v, Shah et al. (2013); *, this study

Fig. 9

source is the same as given in the caption of Fig. 8

Similar content being viewed by others

Data availability

Data will be available on reasonable request to the corresponding author.

References

  • Agoramoorthy, G., Chen, F.-A., & Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155, 320–326.

    Article  CAS  Google Scholar 

  • Alagarsamy, R. (2006). Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuarine, Coastal and Shelf Science, 67, 333–339.

    Article  CAS  Google Scholar 

  • Alagarsamy, R., & Zhang, J. (2005). Comparative studies on trace metal geochemistry in Indian and Chinese rivers. Current Science, 89, 299–309.

    CAS  Google Scholar 

  • Amorosi, A. (2012). Chromium and nickel as indicators of source-to-sink sediment transfer in a Holocene alluvial and coastal system (Po Plain, Italy). Sedimentary Geology, 280, 260–269.

    Article  CAS  Google Scholar 

  • Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India. Environmental Geochemistry and Health, 34, 27–42.

    Article  CAS  Google Scholar 

  • Bhattacharya, B., & Sarkar, S. K. (1996). Total mercury content in marine organisms of the Hooghly estuary, West Bengal, India. Chemosphere, 33, 147–158.

    Article  CAS  Google Scholar 

  • Bhattacharya, B., Sarkar, S. K., & Das, R. (2003). Seasonal variations and inherent variability of selenium in marine biota of a tropical wetland ecosystem: Implications for bioindicator species. Ecological Indicators, 2, 367–375.

    Article  CAS  Google Scholar 

  • Biksham, G., & Subramanian, V. (1988). Elemental composition of Godavari sediments (central and southern Indian subcontinent). Chemical Geology, 70, 275–286.

    Article  CAS  Google Scholar 

  • Biksham, G., Subramanian, V., Ramanathan, A. L., & Van Grieken, R. (1991). Heavy metal distribution in the Godavari River basin. Environmental Geology and Water Sciences, 17, 117–126.

    Article  CAS  Google Scholar 

  • Blaber, S. (1997). Fish and fisheries in tropical estuaries. Springer Science & Business Media.

  • Borole, D., Sarin, M., & Somayajulu, B. (1982). Composition of Narbada and Tapti estuarine particles and adjacent Arabian Sea sediments.

  • Bosch, A. C., O’Neill, B., Sigge, G. O., Kerwath, S. E., & Hoffman, L. C. (2016). Heavy metals in marine fish meat and consumer health: A review. Journal of the Science of Food and Agriculture, 96, 32–48.

    Article  CAS  Google Scholar 

  • Bouchez, J., Gaillardet, J., France-Lanord, C., Maurice, L., & Dutra-Maia, P. (2011). Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochemistry, Geophysics, Geosystems 12.

  • Chakraborty, P., Ramteke, D., Chakraborty, S., & Nagender Nath, B. (2014). Changes in metal contamination levels in estuarine sediments around India – An assessment. Marine Pollution Bulletin, 78, 15–25.

    Article  CAS  Google Scholar 

  • Chandrasekharam, D., Mahoney, J. J., Sheth, H. C., & Duncan, R. A. (1999). Elemental and Nd–Sr–Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal of Volcanology and Geothermal Research, 93, 111–123.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Chatterjee, N., & Bhattacharji, S. (2008). Trace element variations in Deccan basalts: Roles of mantle melting, fractional crystallization and crustal assimilation. JOURNAL-GEOLOGICAL SOCIETY OF INDIA, 71, 171.

    CAS  Google Scholar 

  • Cheevaporn, V., & Menasveta, P. (2003). Water pollution and habitat degradation in the Gulf of Thailand. Marine Pollution Bulletin, 47, 43–51.

    Article  CAS  Google Scholar 

  • Conley, D. J. (2002). Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles 16, 68–61–68–68.

  • CWC, N. (2019). National register of large dams. Central Water Commission, Ministry of water resources, Government of India.

  • Datta, D. K., & Subramanian, V. (1998). Distribution and fractionation of heavy metals in the surface sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin. Environmental Geology, 36, 93–101.

    Article  CAS  Google Scholar 

  • Dekov, V. M., Araújo, F., Van Grieken, R., & Subramanian, V. (1998). Chemical composition of sediments and suspended matter from the Cauvery and Brahmaputra rivers (India). Science of the Total Environment, 212, 89–105.

    Article  CAS  Google Scholar 

  • Dhanakumar, S., Murthy, K. R., Solaraj, G., & Mohanraj, R. (2013). Heavy-metal fractionation in surface sediments of the Cauvery River estuarine region, Southeastern Coast of India. Archives of Environmental Contamination and Toxicology, 65, 14–23.

    Article  CAS  Google Scholar 

  • Eiriksdottir, E. S., Oelkers, E. H., Hardardottir, J., & Gislason, S. R. (2017). The impact of damming on riverine fluxes to the ocean: A case study from Eastern Iceland. Water Research, 113, 124–138.

    Article  CAS  Google Scholar 

  • Ferguson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects.

  • Förstner, U., Ahlf, W., Calmano, W., & Kersten, M. (1990). Sediment Criteria Development. In D. Heling, P. Rothe, U. Förstner, & P. Stoffers (Eds.), Sediments and environmental geochemistry: Selected aspects and case histories (pp. 311–338). Springer.

    Chapter  Google Scholar 

  • Garzanti, E., Andò, S., Padoan, M., Vezzoli, G., & El Kammar, A. (2015). The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130, 9–56.

    Article  Google Scholar 

  • Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178, 95–109.

    Article  CAS  Google Scholar 

  • González-Costa, J. J., Reigosa, M. J., Matías, J. M., & Fernández-Covelo, E. (2017). Analysis of the importance of oxides and clays in Cd, Cr, Cu, Ni, Pb and Zn adsorption and retention with regression trees. PLoS one, 12, e0168523.

  • Gupta, H., & Chakrapani, G. J. (2007). Temporal and spatial variations in water flow and sediment load in the Narmada river. Current Science, 92, 679–684.

    Google Scholar 

  • Gupta, H., Kao, S.-J., & Dai, M. (2012). The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. Journal of Hydrology, 464–465, 447–458.

    Article  Google Scholar 

  • He, Q. B., & Singh, B. R. (1993). Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Journal of Soil Science, 44, 641–650. https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php

  • Imelda, J., Kuriakose, S., & Rajesh, N. (2018). Course manual: International workshop-cum-training programme on “Fisheries and Aquaculture”. ICAR_Central Marine Fisheries Research Institute.

  • Jiann, K. -T., & Ho, P. (2014). Cadmium mixing behavior in estuaries: Redox controls on removal and mobilization. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 25, 655.

  • Jiann, K.-T., Wen, L.-S., & Santschi, P. H. (2005). Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry, 96, 293–313.

    Article  CAS  Google Scholar 

  • Jose, J., Giridhar, R., Anas, A., Loka Bharathi, P. A., & Nair, S. (2011). Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India. Environmental Pollution, 159, 2775–2780.

    Article  CAS  Google Scholar 

  • Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C., & Wu, R. (2016). Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere, 165, 1–9.

    Article  CAS  Google Scholar 

  • Kim, N. D., & Fergusson, J. E. (1991). Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soils. Science of the Total Environment, 105, 191–209.

    Article  CAS  Google Scholar 

  • Klaver, M., MacLennan, S. A., Ibañez-Mejia, M., Tissot, F. L. H., Vroon, P. Z., & Millet, M.-A. (2021). Reliability of detrital marine sediments as proxy for continental crust composition: The effects of hydrodynamic sorting on Ti and Zr isotope systematics. Geochimica Et Cosmochimica Acta, 310, 221–239.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.

    Article  CAS  Google Scholar 

  • Krumgalz, B. S. (1989). Unusual grain size effect on trace metals and organic matter in contaminated sediments. Marine Pollution Bulletin, 20, 608–611.

    Article  CAS  Google Scholar 

  • Krumgalz, B. S., Fainshtein, G., & Cohen, A. (1992). Grain size effect on anthropogenic trace metal and organic matter distribution in marine sediments. Science of the Total Environment, 116, 15–30.

    Article  CAS  Google Scholar 

  • Krupadam, R. J., Ahuja, R., & Wate, S. R. (2007). Heavy metal binding fractions in the sediments of the Godavari estuary, East Coast of India. Environmental Modeling & Assessment, 12, 145–155.

    Article  Google Scholar 

  • Krupadam, R. J., Smita, P., & Wate, S. R. (2006). Geochemical fractionation of heavy metals in sediments of the Tapi estuary. Geochemical Journal, 40, 513–522.

    Article  CAS  Google Scholar 

  • Kumar Sarkar, S., Frančišković-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  CAS  Google Scholar 

  • Li, M., Xu, K., Watanabe, M., & Chen, Z. (2007). Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 71, 3–12.

    Article  Google Scholar 

  • Loneragan, N. R. (1999). River flows and estuarine ecosystems: Implications for coastal fisheries from a review and a case study of the Logan River, southeast Queensland. Australian Journal of Ecology, 24, 431–440.

    Article  Google Scholar 

  • Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., & Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.

    Article  CAS  Google Scholar 

  • Macklin, M. G., & Dowsett, R. B. (1989). The chemical and physical speciation of trace metals in fine grained overbank flood sediments in the Tyne basin, north-east England. CATENA, 16, 135–151.

    Article  CAS  Google Scholar 

  • Mahoney, J. J., Sheth, H. C., Chandrasekharam, D., & Peng, Z. X. (2000). Geochemistry of flood basalts of the Toranmal Section, Northern Deccan Traps, India: Implications for Regional Deccan Stratigraphy. Journal of Petrology, 41, 1099–1120.

    Article  CAS  Google Scholar 

  • Mangalaa, K. R., Cardinal, D., Brajard, J., Rao, D. B., Sarma, N. S., Djouraev, I., Chiranjeevulu, G., Murty, K. N., & Sarma, V. V. S. S. (2017). Silicon cycle in Indian estuaries and its control by biogeochemical and anthropogenic processes. Continental Shelf Research.

  • Martino, M., Turner, A., Nimmo, M., & Millward, G. E. (2002). Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK. Marine Chemistry, 77, 171–186.

    Article  CAS  Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 1–24.

    Article  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den Sedimenten des Rheins-veranderungen seit. Umschav, 79, 133–149.

    Google Scholar 

  • Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Continental Shelf Research, 19, 665–691.

    Article  Google Scholar 

  • Padmini, E., & Geetha, B. (2007). A comparative seasonal pollution assessment study on Ennore Estuary with respect to metal accumulation in the grey mullet, Mugil cephalus. Oceanological and Hydrobiological Studies, 36, 91–103.

    Article  CAS  Google Scholar 

  • Rahaman, W., & Singh, S. K. (2010). Rhenium in rivers and estuaries of India: Sources, transport and behaviour. Marine Chemistry, 118, 1–10.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192.

    Article  CAS  Google Scholar 

  • Ramanathan, A. L., Vaithiyanathan, P., Subramanian, V., & Das, B. K. (1993). Geochemistry of the Cauvery Estuary, East Coast of India. Estuaries, 16, 459–474.

    Article  CAS  Google Scholar 

  • Ramesh, R., Subramanian, V., & van Grieken, R. (1990). Heavy metal distribution in sediments of Krishna River basin, India. Environmental Geology and Water Sciences, 15, 207–216.

    Article  CAS  Google Scholar 

  • Ramesh, R., Subramanian, V., Van Grieken, R., & Van’t Dack, L. (1989). The elemental chemistry of sediments in the Krishna River basin, India. Chemical Geology, 74, 331–341.

    Article  CAS  Google Scholar 

  • Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environment International, 32, 219–223.

    Article  CAS  Google Scholar 

  • Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32, 203–207.

    Article  CAS  Google Scholar 

  • Saha, S., Burley, S. D., & Banerjee, S. (2018). Mixing processes in modern estuarine sediments from the Gulf of Khambhat, western India. Marine and Petroleum Geology, 91, 599–621.

    Article  CAS  Google Scholar 

  • Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle (p. 349). Springer.

    Book  Google Scholar 

  • Salomons, W., & Förstner, U. (2012). Metals in the Hydrocycle. Springer Science & Business Media.

  • Samanta, S., Amrutha, K., Dalai, T. K., & Kumar, S. (2017). Heavy metals in the Ganga (Hooghly) River estuary sediment column: Evaluation of association, geochemical cycling and anthropogenic enrichment. Environmental Earth Sciences, 76, 140.

    Article  Google Scholar 

  • Samanta, S., & Dalai, T. K. (2018). Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans. Geochimica Et Cosmochimica Acta, 228, 243–258.

    Article  CAS  Google Scholar 

  • Santos Bermejo, J. C., Beltrán, R., & Gómez Ariza, J. L. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29, 69–77.

    Article  CAS  Google Scholar 

  • Sarin, M., Borole, D., & Krishnaswami, S. (1979). Geochemistry and geochronology of sediments from the Bay of Bengal and the equatorial Indian Ocean. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, l–154.

  • Sarkar, S. K., Cabral, H., Chatterjee, M., Cardoso, I., Bhattacharya, A. K., Satpathy, K. K., & Alam, M. A. (2008). Biomonitoring of heavy metals using the Bivalve molluscs in Sunderban Mangrove Wetland, Northeast Coast of Bay of Bengal (India): Possible Risks to Human Health. CLEAN – Soil. Air, Water, 36, 187–194.

    Article  CAS  Google Scholar 

  • Seralathan, P. (1987). Trace element geochemistry of modern deltaic sediments of the Cauvery River, east coast of India.

  • Seralathan, P., & Seetaramaswamy, A. (1987). Geochemistry of modern deltaic sediments of the Cauvery river, east coast of India.

  • Shah, B. A., Shah, A. V., Mistry, C. B., & Navik, A. J. (2013). Assessment of heavy metals in sediments near Hazira industrial zone at Tapti River estuary, Surat, India. Environmental Earth Sciences, 69, 2365–2376.

    Article  CAS  Google Scholar 

  • Shahidul Islam, M., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48, 624–649.

    Article  Google Scholar 

  • Sharma, S. K., & Subramanian, V. (2010). Source and distribution of trace metals and nutrients in Narmada and Tapti river basins, India. Environmental Earth Sciences, 61, 1337–1352.

    Article  CAS  Google Scholar 

  • Sheth, H. C., Mahoney, J. J., & Chandrasekharam, D. (2004). Geochemical stratigraphy of Deccan flood basalts of the Bijasan Ghat section, Satpura Range, India. Journal of Asian Earth Sciences, 23, 127–139.

    Article  Google Scholar 

  • Shynu, R., Purnachandra Rao, V., Kessarkar, P. M., & Rao, T. G. (2012). Temporal and spatial variability of trace metals in suspended matter of the Mandovi estuary, central west coast of India. Environmental Earth Sciences, 65, 725–739.

    Article  CAS  Google Scholar 

  • Singh, M., Ansari, A. A., Müller, G., & Singh, I. B. (1997). Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): Effects of human activities. Environmental Geology, 29, 246–252.

    Article  CAS  Google Scholar 

  • Singh, S., Singh, S., & Bhushan, R. (2014). Dissolved boron in the Tapi, Narmada and the Mandovi estuaries, the Western coast of India: Evidence for conservative behavior. Estuaries and Coasts, 37, 1017–1027.

    Article  CAS  Google Scholar 

  • Stoffers, P., Glasby, G., Wilson, C., Davis, K., & Walter, P. (1986). Heavy metal pollution in Wellington Harbour. New Zealand Journal of Marine and Freshwater Research, 20, 495–512.

    Article  CAS  Google Scholar 

  • Subramanian, V., Ramanathan, A. L., & Vaithyanathan, P. (1989). Distribution and fractionation of heavy metals in the Cauvery estuary, India. Marine Pollution Bulletin, 20, 286–290.

    Article  CAS  Google Scholar 

  • Subramanian, V., Van ’t Dack, L., & Van Grieken, R.,. (1985). Chemical composition of river sediments from the Indian sub-continent. Chemical Geology, 48, 271–279.

    Article  CAS  Google Scholar 

  • Subramanian, V., Van Grieken, R., & Van’t Dack, L. (1987). Heavy metals distribution in the sediments of Ganges and Brahmaputra rivers. Environmental Geology and Water Sciences, 9, 93.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Sunderland, E. M. (2007). Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environmental Health Perspectives, 115, 235–242.

    Article  CAS  Google Scholar 

  • Sweere, T., van den Boorn, S., Dickson, A. J., & Reichart, G.-J. (2016). Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn Co, Mo and Cd concentrations. Chemical Geology, 441, 235–245.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12–32.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. GSA Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • Ujjania, N., & Mistry, C. A. (2012). Environmental impact of idol immersion on Tapi river (India). International Journal of Geology, Earth and Environmental Sciences, 2, 11–16.

    Google Scholar 

  • Ujjania, N., & Multani, A. A. (2011). Impact of Ganesh idol immersion activities on the water quality of Tapi River, Surat (Gujarat) India. Research Journal of Biology, 1, 11–15.

    CAS  Google Scholar 

  • Warren, L. J. (1981). Contamination of sediments by lead, zinc and cadmium: A review. Environmental Pollution Series b, Chemical and Physical, 2, 401–436.

    Article  CAS  Google Scholar 

  • Zhang, C., Yu, Z.-G., Zeng, G.-M., Jiang, M., Yang, Z.-Z., Cui, F., Zhu, M.-Y., Shen, L.-Q., & Hu, L. (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73, 270–281.

    Article  CAS  Google Scholar 

  • Žibret, G., & Čeplak, B. (2021). Distribution of Pb, Zn and Cd in stream and alluvial sediments in the area with past Zn smelting operations. Scientific Reports, 11, 17629.

    Article  Google Scholar 

Download references

Acknowledgements

We thank IISER Bhopal for providing the research facilities, P. Nasipuri for providing aliquots of USGS reference materials, and D. Borgohain for help during fieldwork in Gujarat. We also thankfully acknowledge the editor for handling the review of this manuscript and the anonymous reviewers for their constructive comments and suggestions.

Funding

We acknowledge the Ministry of Education (MoE), India, for providing the grant INST/EES/2015036 to S.P. Singh and the Department of Science & Technology (DST) for a Ph.D. fellowship 2017/IF/170451 to N. Ahmad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Pal Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, A., Singh, S.P., Ahmad, N. et al. Inter-estuarine and seasonal to decadal variations of heavy metal pollution in the Gulf of Cambay, India. Environ Monit Assess 194, 36 (2022). https://doi.org/10.1007/s10661-021-09680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09680-0

Keywords

Navigation