Skip to main content

Advertisement

Log in

Bacterial communities and their bioremediation capabilities in oil-contaminated agricultural soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rapid industrialization and development in petrochemical industries have resulted in increased hydrocarbon pollution causing substantial damage to the natural ecosystems including agricultural soils. In the recent, past efforts have been made to treat the contaminated soils using microorganisms by natural processes. Soil bacteria, known for their potential to degrade the soil contaminants, play a vital role in maintaining soil health. In the current study, we observed the influence of hydrocarbon contamination on the physicochemical characteristics and enzymatic activities of the soil. Proteobacteria (30.48%), Actinobacteria (13.91%), and Acidobacteria (12.57%) flourished in the non-contaminated soil whereas contaminated sites were dominated by Proteobacteria (44.02 ± 15.65%). In contrast, the sites experiencing the different degrees of exposure to the hydrocarbon pollution allowed specific augmentation of bacterial taxa (in decreasing order of exposure time), viz. Proteobacteria (60.47%), Firmicutes (32.48%), and Bacteroidetes(13.59%), based on culture-independent approach that suggested their potential role in hydrocarbon degradation as compared to the non-contaminated site. The imputation of metabolic function also supported the positive correlation to the exposure to hydrocarbon pollution, with site 2 being highly abundant for gene families involved in xenobiotics biodegradation. The study provides insights into bacterial community structure with special emphasis on their efficiency to degrade hydrocarbons. The results from the study can help in designing appropriate biodegradation strategies to mitigate the serious problems of oil contamination in agricultural soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data are included in the manuscript and supplementary files.

References

  • Abosede, E. E. (2013). Effect of crude oil pollution on some soil physical properties. Journal of Agriculture and Veterinary Science, 6(3), 14–17.

    Google Scholar 

  • Adam, G., & Duncan, H. J. (2002). Influence of diesel fuel on seed germination. Environmental Pollution, 120(2), 363–370.

    Article  CAS  Google Scholar 

  • Alrumman, S. A., Standing, D. B., & Paton, G. I. (2015). Effect of hydrocarbon contamination on soil microbial community and enzyme activity. Journal of King Saud University—Science, 27, 31–41.

  • Atlas, R. M., & Hazen, T. C. (2011). Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Envirometal Science and Technology, 45, 6709–6715.

    Article  CAS  Google Scholar 

  • Barragan, V. A., Aveiga, I., & Trueba, G. (2008). Microbial community composition in petroleum- contaminated and uncontaminated soil from Francisco de Orellana, in the northern Ecuadorian Amazon. International Microbiology, 11, 121–126.

    CAS  Google Scholar 

  • Baruah, R., Mishra, S. K., Kalita, D. J., Silla, Y., Chauhan, P. S., Singh, A. K., & DekaBoruah, H. P. (2017). Assessment of bacterial diversity associated with crude oil-contaminated soil samples from Assam. International Journal of Environmental Science and Technology, 14, 2155–2172.

    Article  CAS  Google Scholar 

  • Bastida, F., Jehmlich, N., Lima, K., Morris, B. E. L., Richnow, H. H., Hernández, T., vonBergen, M., & García, C. (2016). The ecological and physiological responses of the microbial community from a semi arid soil to hydrocarbon contamination and its bioremediation using compost amendments. Journal of Proteomics, 135, 162–169.

    Article  CAS  Google Scholar 

  • Bell, T. H., Yergeau, E., Maynard, C., Juck, D., Whyte, L. G., & Greer, C. W. (2013). Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME Journal, 7, 1200–1210.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., et al., (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., & Knight, R. (2011). Global patterns of16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of USA, 108 Suppl 1, 4516–4522.

  • Casida, L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371–376.

    Article  CAS  Google Scholar 

  • Das, S. K., & Varma, A. (2011). Role of enzymes in maintaining soil health. - In: Shukla,G., Varma, A. (eds.) Soil Enzymology, Soil Biology 22, Springer-Verlag Berlin Heidelberg USA.

  • DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, achimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072.

    Article  CAS  Google Scholar 

  • Dindar, E., Topac, F. O., & Başkaya, H. S. (2015). Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration and Biodegradation, 105, 268–275.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.

    Article  CAS  Google Scholar 

  • Hu, C., Rea, C., Yu, Z., & Lee, J. (2016). Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. Journal of Applied Microbiology, 120(1), 138–151.

    Article  CAS  Google Scholar 

  • Irha, N., Slet, J., & Petersell, V. (2003). Effect of heavy metals and PAH on soil accessed via dehydrogenase assay. Environment International, 28(8), 779–782.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall of India Ltd, New Delhi, pp - 23.

  • Jani, K., Dhotre, D., Bandal, J., Shouche, Y., Suryavanshi, M. V., Rale, V., & Sharma, A. (2018). World’slargest mass bathing event influences the bacterial communities of Godavari, a holy river of India. Microbial EcoLogy, 76(3), 706–718.

    Article  Google Scholar 

  • Johnston, J. E., Lim, E., & Roh, H. (2019). Impact of upstream oil extraction and environmental public health: A review of the evidence. Science of the Total Environment, 657, 187–199.

    Article  CAS  Google Scholar 

  • Kajale, S., Deshpande, N., Shouche, Y., & Sharma, A. (2020). Cultivation of diverse microorganisms from hypersaline lake and impact of delay in sample processing on cell viability. Current Microbiology, 1–6.

  • Khalilova, H. K. (2015). The impact of oil contamination on soil ecosystem. Biological and Chemical Research, 133–139.

  • Khamehchiyan, M., Charkhabi, A. H., & Tajik, M. (2007). Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89(3), 220–229.

    Article  Google Scholar 

  • Kisic, I., Mesic, S., Basic, F., Brkic, V., Mesic, M., Durn, G., Zgorelec, Z., & Bertovic, L. (2009). The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops. Geoderma, 149(3–4), 209–216.

    Article  CAS  Google Scholar 

  • Kumbhare, S. V., Dhotre, D. P., Dhar, S. K., et al. (2015). Insights into diversity and imputed metabolic potential of bacterial communities in the continental shelf of Agatti Island, India. Plos ONEhttps://pubmed.ncbi.nlm.nih.gov/26066038/

  • Lee, C. S., Kim, M., Lee, C., Yu, Z., & Lee, J. (2016). The microbiota of recreational freshwaters and the implications for environmental and public health. Frontiers in Microbiology, 7, 1826.

    Article  Google Scholar 

  • Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957–2963.

    Article  Google Scholar 

  • Margesin, R., Labbe, D., Schinner, F., Greer, C. W., & Whyte, L. G. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Applied and Environmental Microbiology., 69, 3085–3092.

    Article  CAS  Google Scholar 

  • McGarity, J. W., & Mayers, M. G. (1967). A survey of urease activity in soils of northern New South Wales. Plant and Soil, 27, 217–238.

    Article  CAS  Google Scholar 

  • Mishra, S., Jyoti, J., Kuhad, R. C., & Lal, B. (2001). In situ bioremediation potential of an oily sludge- degrading bacterial consortium. Current Microbiology, 43, 328–335.

    Article  CAS  Google Scholar 

  • Mukherjee, A. K., & Bordoloi, N. K. (2012). Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environmental Science and Pollution Research, 19, 3380–3388.

    Article  CAS  Google Scholar 

  • Quatrini, P., Scaglione, G., De Pasquale, C., Reila, S., & Puglia, A. M. (2008). Isolation of Gram-positive n-alkane degraders from a hydrocarbon contaminated Mediterranean shoreline. Journal of Applied Microbiology., 104, 251–259.

    CAS  Google Scholar 

  • Salam, L. B., Obayori, S. O., Nwaokorie, F. O., Suleiman, A., & Mustapha, R. (2017). Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environmental Science and Pollution Research, 24(8), 7139–7159.

    Article  CAS  Google Scholar 

  • Santos dos, H. F., Cury, J. C., do Carmo, F. L., Santos dos, A. L., Tiedje, J., van Elsas, J. D., et al. (2011). Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE, 6, e16943.

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    Article  CAS  Google Scholar 

  • Sha, S. P., Jani, K., Sharma, A., Anupma, A., Pradhan, P., Shouche, Y., & Tamang, J. P. (2017). Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India. Scientific Report, 7, 1–7.

    Google Scholar 

  • Sharma, A., Jani, K., Thite, V., Dhar, S. K., & Shouche, Y. S. (2019). Geochemistry shapes bacterial communities and their metabolic potentials in tertiary coalbed. Geomicrobiology Journal, 36(2), 179–187.

    Article  CAS  Google Scholar 

  • Sharma, A., Paul, D., Dhotre, D., Jani, K., Shouche, Y. S., & Pandey, A. (2017). Deep sequencing analysis of bacterial community structure of Soldhar hot spring. India. Microbiology, 1(86), 136–142.

    Google Scholar 

  • Spini, G., Federica, S., Poli, A., Blieux, A. L., Regnier, T., Gramellini, C., Verease, G. C., & Puglisi, E. (2018). Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Frontiers in Microbiology, 9, 25–43.

    Article  Google Scholar 

  • Subrahmanyam, G., Khonde, N., Maurya, D. M., Chamyal, L. S., & Archana, G. (2014). Microbial activity and culturable bacterial diversity in sediments of the Great Rann of Kachchh. Western India. Pedosphere, 24(1), 45–55.

    Article  Google Scholar 

  • Sutton, N. B., et al. (2012). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619–630.

    Article  Google Scholar 

  • Tabatabai, M. A., & Dick, W. A. (2002). Enzymes in soil. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the Environment: Activity, Ecology and Applications (pp. 567–596). Marcel Dekker.

    Google Scholar 

  • Tabatabami, A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.

    Article  Google Scholar 

  • Tate III, R. L. (2002). Microbiology and enzymology of carbon and nitrogen cycling. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the Environment: Activity, Ecology and Applications (pp. 227–248). Marcel Dekker Inc.

    Google Scholar 

  • Ubani, O., Atagana, H. I., Thantsha, M. S., & Rasheed, A. (2016). Identification and characterisation of oil sludge degrading bacteria isolated from compost. Archives of Environmental Protection, 42(2), 67–77.

    Article  Google Scholar 

  • Vaisvalavicius, R., Motuzas, A., Prosycevas, I., et al. (2006). Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment. Archives of Agronomy and Soil Science., 52(02), 161–169.

    Article  CAS  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, J., & Zhao, J. (2010). Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland. China. Environmental Monitoring and Assessment, 161(1), 271–280.

    Article  CAS  Google Scholar 

  • Xiong, S., Li, X., Chen, J., Zhao, L., Zhang, H., & Zhang, X. (2015). Crude oil degradation by bacterial consortia under four different redox and temperature conditions. Applied Microbioly and Biotechnology, 99, 1451–1461.

    Article  CAS  Google Scholar 

  • Yadav, T. C., Pal, R. R., Shastri, S., Jadeja, N. B., & Kapley, A. (2015). Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresource Technology, 188, 24–32.

    Article  CAS  Google Scholar 

  • Zhang, W., Chen, L., Zhang, R., & Lin, K. (2016). High throughput sequencing analysis of the joint effects of BDE209-Pb on soil bacterial community structure. Journal of Hazardous Material, 301, 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

Sashi Prava Devi is thankful to the Head, Department of Botany, Gauhati University, for allowing her to use the departmental facilities. SPD and DKJ are thankful to the Director, NCCS, for allowing them to use the sequencing facility to carry out this work.

Funding

Sashi Prava Devi is thankful to the Department of Science and Technology, Government of India, for granting her INSPIRE Fellowship (IF1450734) to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

DKJ and AS designed the study. SPD and KJ carried out the experiments and data analysis. SPD prepared the manuscript. DKJ and AS supervised the work and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Avinash Sharma or Dhruva Kumar Jha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S.P., Jani, K., Sharma, A. et al. Bacterial communities and their bioremediation capabilities in oil-contaminated agricultural soils. Environ Monit Assess 194, 9 (2022). https://doi.org/10.1007/s10661-021-09669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09669-9

Keywords

Navigation