Skip to main content
Log in

Effects of freshwater release on oyster reef density, reproduction, and disease in a highly modified estuary

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Few estuaries remain unaffected by water management and altered freshwater deliveries. The Caloosahatchee River Estuary is a perfect case study for assessing the impact of altered hydrology on natural oyster reef (Crassostrea virginica) populations. The watershed has been highly modified and greatly enlarged by an artificial connection to Lake Okeechobee. Accordingly, to generate data to support water management recommendations, this study monitored various oyster biometrics over 15 years along the primary salinity gradient. Oyster reef densities were significantly affected by both prolonged high volume freshwater releases creating hyposaline conditions at upstream sites and by a lack of freshwater input creating hypersaline conditions at downstream sites. Low freshwater input led to an increase in disease caused by Perkinsus marinus and predation. Moderate (< 2000 cfs) and properly timed (winter/spring) freshets benefited oysters with increased gametogenesis, good larval mixing, and a reprieve from disease. If high volume freshets occurred in the late summer, extensive mortality occurred at the upstream site due to low salinity. These findings suggest freshwater releases in the late summer, when reproductive stress is at its peak and pelagic larvae are most vulnerable, should be limited to < 2000 cfs, but that longer freshets (1–3 weeks) in the winter and early spring (e.g., December–April) benefit oysters by reducing salinity and lessening disease intensity. Similar strategies can be employed in other managed systems, and patterns regarding the timing of high volume flows are applicable to all estuaries where the management of healthy oyster reefs is a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Data will be made publically available upon publication.

Code availability

Not applicable.

References

  • Abtew, W., & Trimble, P. (2010). El Niño Southern oscillation link to South Florida hydrology and water management applications. Water Resource Management, 2(15), 4255–4271.

  • Alber, M. (2002). A conceptual model of estuarine freshwater inflow management. Estuaries, 25(6), 1246–1261.

    Article  Google Scholar 

  • Albright, B. W., Abbe, G. R., McCollough, C. B., Barker, L. S., & Dungan, C. F. (2007). Growth and mortality of dermo-disease-free juvenile oysters (Crassostrea virginica) at three salinity regimes in an enzootic area of Chesapeake Bay. Journal of Shellfish Research, 26(2), 451–463. https://doi.org/10.2983/0730-8000(2007)26[451:GAMODJ]2.0.CO;2

    Article  Google Scholar 

  • Andrews, J. D. (1961). Measurement of shell growth in oysters by weighing in water. VIMS Articles, 1257.

  • Andrews, J. D., Haven, D., & Quayle, D. (1959). Fresh-water kill of oysters (Crassostrea virginica) in James River, Virignia, 1958. Proceeding of the National Shellfisheries Association, 49, 29–49.

    Google Scholar 

  • Armstrong, C., Zheng, F., Wachnicka, A., Khan, A., Chen, Z., & Baldwin, L. (2019). St. Lucie and Caloosahatchee River Watersheds Annual Report. South Florida Environmental Report, 1–44.

  • Baker, P., Fajans, J., Baker, S., & Bergquist, D. (2006). Green mussels in Florida, USA: Review of trends and research. World Aquaculture, 37(4), 43–67.

    Google Scholar 

  • Barber, B. J. (1996). Gametogenesis of eastern oysters, Crassostrea virginica (Gmelin, 1791), and Pacific oysters, Crassostrea gigas (Thunberg, 1793) in disease-endemic lower Chesapeake Bay. Journal of Shellfish Research, 15(2), 285–290.

    Google Scholar 

  • Barnes, T. (2005). Caloosahatchee Estuary conceptual ecological model. Wetlands, 25(4), 884–897.

    Article  Google Scholar 

  • Bayne, B., Holland, D., Moore, M., Lowe, D., & Widdows, J. (1978). Effects of stress in the adult on eggs of Mytilus edulis. Journal of the Marine Biological Association of the United Kingdom, 58(4), 825–841.

    Article  Google Scholar 

  • Bergquist, D. C., Hale, J. A., Baker, P., & Baker, S. M. (2006). Development of ecosystem indicators for the Suwannee River Estuary: Oyster reef habitat quality along a salinity gradient. Estuaries and Coasts, 29(3), 353–360. https://doi.org/10.1007/BF02784985

    Article  CAS  Google Scholar 

  • Bougrier, S., Geairon, P., Deslous-Paoli, J. M., Bacher, C., & Jonquières, G. (1995). Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture, 134, 143–154. https://doi.org/10.1016/0044-8486(95)00036-

    Article  Google Scholar 

  • Burreson, E. M., Calve, L. M. R., La Peyre, J. F., Counts, F., & Paynter, K. T. (1994). Acute osmotic tolerance of cultured cells of the oyster pathogen Perkinsus marinus (Apicomplexa: Perkinsida). Comparative Biochemistry and Physiology, 109A(3), 575–582.

    Article  CAS  Google Scholar 

  • Carignan, V., & Villard, M. A. (2002). Selecting indicator species to monitor ecological integrity: A review. Environmental Monitoring and Assessment, 78(1), 45–61. https://doi.org/10.1023/A:1016136723584

    Article  Google Scholar 

  • Caspers, H. (1967). Estuaries: analysis of definitions and biological considerations. In G. H. Lauff (Ed.), Estuaries (83rd ed., pp. 6–8). American Association for the Advancement of Science Publication.

  • Chu, F.-L.E., & Volety, A. (1997). Disease processes of the parasite Perkinsus marinus in eastern oyster Crassostrea virginica: Minimum dose for infection initiation, and interaction of temperature, salinity and infective cell dose. Diseases of Aquatic Organisms, 28(1), 61–68. https://doi.org/10.3354/dao028061

    Article  Google Scholar 

  • Dittman, D., Ford, S., & Padilla, D. (2001). Effects of Perkinsus marinus on reproduction and condition of the Eastern oyster, Crassostrea virginica, depend on timing. Journal of Shellfish Research, 20(3), 1025–1034.

    Google Scholar 

  • Doering, P. H., & Chamberlain, R. H. (1999). Water quality and source of freshwater discharge to the Caloosahatchee Estuary, Florida. Journal of the American Water Resources Association, 35(4), 793–806. https://doi.org/10.1111/j.1752-1688.1999.tb04175.x

    Article  CAS  Google Scholar 

  • Doering, P. H., Chamberlain, R. H., & Haunert, D. E. (2002). Using submerged aquatic vegetation to establish minimum and maximum freshwater inflows to the Caloosahatchee Estuary. Florida. Estuaries, 25(6), 1343–1354.

    Article  Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074. https://doi.org/10.1126/science.289.5487.2068

    Article  CAS  Google Scholar 

  • Elsner, J. B., Kossin, J. P., & Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones. Nature Letters, 455, 2–5. https://doi.org/10.1038/nature07234

    Article  CAS  Google Scholar 

  • Fasullo, J., Otto-Bliesner, B., & Stevenson, S. (2018). ENSO’s changing influence on temperature, precipitation, and wild fire in a warming climate. Geophysical Research Letters, 45, 9216–9225.

    Article  Google Scholar 

  • Fisher, W. S., Winstead, J. T., Oliver, L. M., Edmiston, H. L., & Bailey, G. O. (1996). Physiologic variability of Eastern oysters from Apalachicola Bay. Florida. Journal of Shellfish Research, 15(3), 543–553.

    Google Scholar 

  • Galtsoff, P. S. (1964). The American Oyster Crassostrea virginica. Fishery Bulletin, 64 United States Government Printing Office, Washington, D.C.

  • Garland, H. G., & Kimbro, D. L. (2015). Drought increases consumer pressure on oyster reefs in Florida, USA. PLoS ONE, 10(8), e0125095. https://doi.org/10.1371/journal.pone.0125095

    Article  CAS  Google Scholar 

  • Gomez, F. A., Lee, S.-K., Hernandez, F. J. J., Chiaverano, L. M., Muller-Karger, F. E., Liu, Y., & Lamkin, J. T. (2019). ENSO-induced co-variability of salinity, plankton biomass and coastal currents in the northern Gulf of Mexico. Scientific Reports, 9(178), 1–10. https://doi.org/10.1038/s41598-018-36655-y

    Article  CAS  Google Scholar 

  • Grabowski, J. H., & Peterson, C. H. (2007). Restoring oyster reefs to recover ecosystem services. In K. Cuddington, J. E. Byers, W. G. Wilson, & A. Hastings (Eds.), Ecosystem Engineers: Plants to Protists (4th ed. pp. 281–298)

  • Grizzle, R. E., Brodeur, M. A., Abeels, H. A., & Greene, J. K. (2008). Bottom habitat mapping using towed underwater videography: Subtidal oyster reefs as an example application. Journal of Coastal Research, 241(1), 103–109. https://doi.org/10.2112/06-0672.1

    Article  Google Scholar 

  • Haven, D. S., & Fritz, L. W. (1985). Setting of the American oyster Crassostrea virginica in the James River, Virginia, USA: Temporal and spatial distribution. Marine Biology, 86(3), 271–282.

    Article  Google Scholar 

  • Kennedy, V. S. (1996). Biology of Larvae and Spat. In V. S. Kennedy, R. I. Newell, & A. F. Eble (Eds.), The Eastern Oyster: Crassostrea virginica (pp. 371–421). Maryland Sea Grant.

  • La Peyre, M. K., Eberline, B. S., Soniat, T. M., & La Peyre, J. F. (2013). Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA. Estuarine, Coastal and Shelf Science, 135, 146–157. https://doi.org/10.1016/j.ecss.2013.10.001

    Article  Google Scholar 

  • La Peyre, M. K., Geaghan, J., Decossas, G., & La Peyre, J. F. (2016). Analysis of environmental factors influencing salinity patterns, oyster growth, and mortality in lower Breton Sound Estuary, Louisiana, using 20 years of data. Journal of Coastal Research, 319(3), 519–530. https://doi.org/10.2112/JCOASTRES-D-15-00146.1

    Article  Google Scholar 

  • La Peyre, M. K., Gossman, B., & La Perye, J. F. (2009). Freshwater flow for oyster production: Effects of freshet rate and magnitude of change and duration on eastern oysters and Perkinsus marinus infection. Estuaries and Coasts, 32, 522–534. https://doi.org/10.1007/s12237-009-9149-9

    Article  Google Scholar 

  • La Peyre, M. K., Nickens, A. D., Volety, A. K., Tolley, G. S., & La Peyre, J. F. (2003). Environmental significance of freshets in reducing Perkinsus marinus infection in eastern oysters Crassostrea virginica: Potential management applications. Marine Ecology Progress Series, 248, 165–176. https://doi.org/10.3354/meps248165

    Article  Google Scholar 

  • Lauff, G. (1967). Estuaries. Conference on Estuaries Held at Jekyll Island, Georgia. March 13 - April 2, 1964.

  • Lipcius, R. N., Eggleston, D. B., Schreiber, S. J., Seitz, R. D., Shen, J., Sisson, M., Stockhausen, W. T., & Wang, H. V. (2008). Importance of metapopulation connectivity to restocking and restoration of marine species. Reviews in Fisheries Science, 16(1–3), 101–110. https://doi.org/10.1080/10641260701812574

    Article  Google Scholar 

  • Liu, Z., Choudhury, S. H., Xia, M., Holt, J., Wallen, C. M., Yuk, S., & Sanborn, S. C. (2009). Water quality assessment of coastal Caloosahatchee River watershed, Florida. Journal of Environmental Science and Health, Part A, 44(10), 972–984. https://doi.org/10.1080/10934520902996872

    Article  CAS  Google Scholar 

  • Livingston, R. J., Howell, R. L., IV., Niu, X., Graham Lewis, I., & Woodsum, G. C. (1999). Recovery of oyster reefs (Crassostrea virginica) in a gulf estuary following disturbance by two hurricanes. Bulletin of Marine Science, 64(3), 465–483.

    Google Scholar 

  • Livingston, R. J., Lewis, F., Woodsum, G., Niu, X.-F., Galperin, B., Huang, W., Christensen, J. D., Monaco, M., Battista, T., Klein, C., Howell, R., IV., & Ray, G. (2000). Modelling oyster population response to variation in freshwater input. Estuarine, Coastal and Shelf Science, 50, 655–672. https://doi.org/10.1006/ecss.1999.0597

    Article  Google Scholar 

  • Loosanoff, V. (1952). Behavior of oysters in water of low salinities. National Shellfisheries Association, 43, 135–151.

    Google Scholar 

  • Lucas, A., & Beninger, P. G. (1985). The use of physiological condition indices in marine bivalve aquaculture. Aquaculture, 44, 187–200.

    Article  Google Scholar 

  • National Research Council. (1980). The International Mussel Watch: Report of a Workshop. The National Academies Press. https://doi.org/10.17226/19786

  • Mackin, J. (1962). Oyster disease caused by Dermocystidium marinum and other microorganisms in Louisiana. Publication of the Institute of Marine Science, University of Texas, 7, 132–229.

    Google Scholar 

  • Mann, R., Southworth, M., Harding, J. M., & Wesson, J. A. (2009). Population studies of the native Eastern oyster, Crassostrea virginica (Gmelin, 1791) in the James River, Virginia, USA. Journal of Shellfish Research, 28(2), 193–220. https://doi.org/10.2983/035.028.0203

    Article  Google Scholar 

  • McCarty, A. J., McFarland, K., Small, J., Allen, S. K. J., & Plough, L. (2020). Heritability of acute low salinity survival in the Eastern oyster (Crassostrea virginica). Aquaculture, 529, 735649. https://doi.org/10.1016/j.aquaculture.2020.735649

    Article  CAS  Google Scholar 

  • McCoullough, C. B., Albright, B. W., Abbe, G. R., Barker, L. S., & Dungan, C. F. (2007). Acquisition and progression of Perkinsus marinus infections by specific-pathogen-free juvenile oysters (Crassostrea virginica Gmelin) in a mesohaline Chesapeake Bay tributary. Journal of Shellfish Research, 26(2), 465–477. https://doi.org/10.2983/0730-8000(2007)26[465:AAPOPM]2.0.CO;2

    Article  Google Scholar 

  • McFarland, K., Baker, S., Baker, P., Rybovich, M., & Volety, A. K. (2014). Temperature, salinity, and aerial exposure tolerance of the invasive mussel, Perna viridis, in estuarine habitats: Implications for spread and competition with native oysters, Crassostrea Virginica. Estuaries and Coasts, 38(5), 1619–1628. https://doi.org/10.1007/s12237-014-9903-5

    Article  CAS  Google Scholar 

  • McFarland, K., Donaghy, L., & Volety, A. (2013). Effect of acute salinity changes on hemolymph osmolality and clearance rate of the non-native mussel, Perna viridis, and the native oyster, Crassostrea virginica in Southwest Florida. Aquatic Invasions, 8(3), 299–310. https://doi.org/10.3391/ai.2013.8.3.06

    Article  Google Scholar 

  • McFarland, K., & Hare, M. P. (2018). Restoring oysters to urban estuaries: redefining habitat quality for eastern oyster performance near New York City. PLoS ONE, 13(11), e0207368. https://doi.org/10.1371/journal.pone.0207368

  • Montagna, P. A., Alber, M., Doering, P., & Connor, M. S. (2002). Freshwater inflow: Science, policy, management. Estuaries, 25(6), 1243–1245. https://doi.org/10.1007/bf02692221

    Article  Google Scholar 

  • Newell, R. I. (2004). Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research, 23(1), 51–61.

    Google Scholar 

  • North, E. W., Schlag, Z., Hood, R. R., Li, M., Zhong, L., Gross, T., & Kennedy, V. S. (2008). Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Marine Ecology Progress Series, 359, 99–115. https://doi.org/10.3354/meps07317

    Article  Google Scholar 

  • Pace, A., Sara, M., Leanne, M., Eric, N., Kathryn, A., Kelsey, M., et al. (2020). Dying, decaying, and dissolving into irrelevance: First direct in-the-field estimate of Crassostrea virginica shell loss — a case history from Mississippi Sound. Journal of Shellfish Research, 39(2), 245–256. https://doi.org/10.2983/035.039.0206

    Article  Google Scholar 

  • Parker, M. L., Arnold, W. S., Geiger, S. P., Gorman, P., & Leone, E. H. (2013). Impacts of freshwater management activities on Eastern Oyster (Crassostrea virginica) density and recruitment: Recovery and long-term stability in seven Florida estuaries. Journal of Shellfish Research, 32(3), 695–708. https://doi.org/10.2983/035.032.0311

    Article  Google Scholar 

  • Paynter, K. T., & Burreson, E. M. (1991). Effects of Perkinsus marinus infection in the eastern oyster, Crassostrea virginica: II. Disease development and impact on growth rate at different salinities. In Journal of Shellfish Research, 10(2), 425–431.

  • Peterson, C., Grabowski, J., & Powers, S. (2003). Estimated enhancement of fish production resulting from restoring oyster reef habitat: Quantitative valuation. Marine Ecology Progress Series, 264, 249–264. https://doi.org/10.3354/meps264249

    Article  Google Scholar 

  • Petes, L. E., Brown, A. J., & Knight, C. R. (2012). Impacts of upstream drought and water withdrawals on the health and survival of downstream estuarine oyster populations. Ecology and Evolution, 2(7), 1712–1724. https://doi.org/10.1002/ece3.291

    Article  Google Scholar 

  • Phlips, E. J., Badylak, S., Nelson, N. G., & Havens, K. E. (2020). Hurricanes, El Niño and harmful algal blooms in two sub-tropical Florida estuaries: Direct and indirect impacts. Scientific Reports, 10, 1–12. https://doi.org/10.1038/s41598-020-58771-4

    Article  CAS  Google Scholar 

  • Piazza, B. P., Banks, P. D., & La Peyre, M. K. (2005). The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restoration Ecology, 13(3), 499–506.

    Article  Google Scholar 

  • Pierce, S. K. (1982). Invertebrate cell volume control mechanisms: A coordinated use of intracellular amino acids and inorganic ions as osmotic solute. Biologcal Bulletin, 163, 405–419.

    Article  CAS  Google Scholar 

  • Powell, E. N., Klinck, J. M., Hofmann, E. E., & McManus, M. A. (2003). Influence of water allocation and freshwater inflow on oyster production: A hydrodynamic-oyster population model for Galveston Bay, Texas, USA. Environmental Management, 31(1), 100–121. https://doi.org/10.1007/s00267-002-2695-6

    Article  Google Scholar 

  • Pritchard, R. (1967). What is an estuary? Physical viewpoint. In G. Lauff (Ed.), Estuaries (pp. 3–5). American Associatoin for the Advancement of Science.

    Google Scholar 

  • Ray, S. M. (1954). Biological studies of Dermocystidium marinum a fungous parasite of oysters. Doctoral Thesis (pp1-182), The Rice Institute.

  • Reece, K., & Dungan, C. (2006). Perkinsus sp. Infections of Marine Molluscs. In: American Fisheries Society–Fish Health Section blue book, AFS/FHS, Ch. 5.2, p 1–17, Bethesda, MD.

  • Rivera-Ingraham, G. A., & Lingot, J.-H. (2017). Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: Raising the questions for future research. Journal of Experimental Biology, 220, 1749–1760. https://doi.org/10.1242/jeb.135624

    Article  Google Scholar 

  • Roegner, G. C., & Mann, R. (1995). Early recruitment and growth of the American oyster Crassostrea virginica (Bivalvia: Ostreidae) with respect to tidal zonation and season. Marine Ecology Progress Series, 117(1–3), 91–102. https://doi.org/10.3354/meps117091

    Article  Google Scholar 

  • Rumbold, D. G., & Doering, P. H. (2020). Water quality and source of freshwater discharge to the Caloosahatchee Estuary, Florida: 2009–2018. Florida Scientist, 83(1), 1–20.

    CAS  Google Scholar 

  • Rybovich, M., La Peyre, M. K., Hall, S. G., & La Peyre, J. F. (2016). Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. Journal of Shellfish Research, 35(1), 101–113. https://doi.org/10.2983/035.035.0112

    Article  Google Scholar 

  • Scarlatos, P. D. (1988). Caloosahatchee Estuary Hydrodynamics. Water Resources Division, Resource Planning Department, South Florida Water Management District. Technical Publication 88–87.

  • Scharping, R., Plough, L., Meritt, D., & North, E. (2019). Low salinity tolerance of early-stage oyster larvae from a mesohaline estuary. Marine Ecology Progress Series, 613, 97–106. https://doi.org/10.3354/meps12905

    Article  CAS  Google Scholar 

  • Shen, J., Boon, J. D., & Kuo, A. Y. (1999). A modeling study of a tidal intrusion front and its impact on larval dispersion in the James River Estuary. Virginia. Estuaries, 22(3), 681–692. https://doi.org/10.2307/1353055

    Article  Google Scholar 

  • Shumway, S. E. (1977a). Effect of salinity fluctuation on the osmotic pressure and Na+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. Marine Biology, 41, 153–177.

    Article  CAS  Google Scholar 

  • Shumway, S. E. (1977b). The effect of fluctuating salinity on the tissue water content of eight species of bivalve molluscs. Journal of Comparative Physiology B, 116, 269–285.

    Article  CAS  Google Scholar 

  • Shumway, S. E. (1996). Natural Environmental Factors. In V. S. Kennedy, R. I. Newell, & A. F. Eble (Eds.), The Eastern Oyster: Crassostrea virginica (pp. 467–511). Maryland Sea Grant.

  • Sklar, F. H., & Browder, J. A. (1998). Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environmental Management, 22(4), 547–562. https://doi.org/10.1007/s002679900127

    Article  CAS  Google Scholar 

  • Smith, M. D. (2011). The ecological role of climate extremes: Current understanding and future prospects. Journal of Ecology, 99, 651–655. https://doi.org/10.1111/j.1365-2745.2011.01833.x

    Article  Google Scholar 

  • Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., & Sukhotin, A. A. (2012). Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research, 79, 1–15. https://doi.org/10.1016/j.marenvres.2012.04.003

    Article  CAS  Google Scholar 

  • Southworth, M., Harding, J. M., Wesson, J. A., & Mann, R. (2010). Oyster (Crassostrea virginica, Gmelin 1791) population dynamics on public reefs in the Great Wicomico River, Virginia, USA. Journal of Shellfish Research, 29(2), 271–290. https://doi.org/10.2983/035.029.0202

    Article  Google Scholar 

  • Tolley, S. G., Hurley, A., & Miner, R. (2013). Influence of freshwater inflow on reproductive capacity of the mud crab Eurypanopeus depressus inhabiting oyster reefs. Journal of Crustacean Biology, 33(1), 36–41. https://doi.org/10.1163/1937240X-00002117

    Article  Google Scholar 

  • Tolley, S. G., Volety, A. K., & Savarese, M. (2005). Influence of salinity on the habitat use of oyster reefs in three southwest Florida estuaries. Journal of Shellfish Research, 24(1), 127–137. https://doi.org/10.1080/00364827.1980.10431474

    Article  Google Scholar 

  • Tolley, S. G., & Volety, A. K. (2005). The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. Journal of Shellfish Research, 24(4), 1007–1012

    Article  Google Scholar 

  • Tolley, S. G., Volety, A. K., Savarese, M., Walls, L. D., Linardich, C., & Everham, E. M., III. (2006). Impacts of salinity and freshwater inflow on oyster-reef communities in Southwest Florida. Aquatc Living Resources, 19, 371–387

    Article  Google Scholar 

  • Tolley, S. G., Brosious, B. B., & Peebles, E. B. (2013). Recruitment of the crabs Eurypanopeus depressus, Rhithropanopeus harrisii, and Petrolisthes armatus to oyster reefs: The influence of freshwater flow. Estuaries and Coasts, 36(4), 820–833. https://doi.org/10.1007/sl2237-013-9590-7

    Article  CAS  Google Scholar 

  • Tremblay, R., Myrand, B., Sevigny, J.-M., Blier, P., & Guderley, H. (1998). Bioenergetic and genetic parameters in relation to susceptibility of blue mussels, Mytilus edulis (L.) to summer mortality. Journal of Experimental Marine Biology and Ecology, 221(1), 27–58. https://doi.org/10.1016/S0022-0981(97)00114-7

  • Vedwan, N., Ahmad, S., Miralles-wilhelm, F., Broad, K., Letson, D., & Podesta, G. (2008). Institutional evolution in Lake Okeechobee management in Florida: Characteristics, impacts, and limitations. Water Resource Management, 22, 699–718. https://doi.org/10.1007/s11269-007-9187-7

    Article  Google Scholar 

  • Volety, A. K., Haynes, L., Goodman, P., & Gorman, P. (2014). Ecological condition and value of oyster reefs of the Southwest Florida shelf ecosystem. Ecological Indicators, 44, 108–119. https://doi.org/10.1016/j.ecolind.2014.03.012

    Article  Google Scholar 

  • Volety, A. K., McFarland, K., Darrow, E., Rumbold, D., Tolley, S. G., & Loh, A. N. (2016). Oyster monitoring network for the Caloosahatchee Estuary 2000–2015. South Florida Water Management District. Technical Report. Ft. Myers, FL.

  • Volety, A. K., Savarese, M., Tolley, S. G., Arnold, W. S., Sime, P., Goodman, P., et al. (2009). Eastern oysters (Crassostrea virginica) as an indicator for restoration of Everglades Ecosystems. Ecological Indicators, 9S, 120–136. https://doi.org/10.1016/j.ecolind.2008.06.005

    Article  Google Scholar 

  • Wasno, R. M., Toll, R. B., & Volety, A. K. (2020). Investigation of trophic transfer from oyster reefs to predatory fishes in Southwest Florida. Journal of Shellfish Research, 39(2), 257–268. https://doi.org/10.2983/035.039.0207

    Article  Google Scholar 

  • Wells, H. W. (1961). The fauna of oyster beds, with special reference to the salinity factor. Ecological Monographs, 31(3), 239–266.

    Article  Google Scholar 

  • Wilber, D. H. (1992). Associations between freshwater inflows and oyster productivity in Apalachicola Bay, Florida. Estuarine, Coastal and Shelf Science, 35(2), 179–190. https://doi.org/10.1016/S0272-7714(05)80112-X

    Article  Google Scholar 

  • Wilson, C., Scotto, L., Volety, A., Laramore, S., & Haunert, D. (2005). Survey of water quality, oyster reproduction and oyster health status in the St. Lucie Estuary. Journal of Shellfish Research, 24(1), 157–165.

    Article  Google Scholar 

  • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 73(1), 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

Download references

Acknowledgements

This project was funded through a grant from the RECOVER Program and the South Florida Water Management District (SFWMD; award #460000227). We are grateful to Ms. Darlene Marley for her assistance with data management. Flow data was generously provided by Ms. Kathy Haunert (SFWMD). Many people helped with the field and laboratory work associated with this project. First and foremost, we thank our laboratory managers, Ms. Erin Rasnake, Ms. Lacey Rains, Ms. Lindsay Castret, and Ms. Nicole Haas for their dedication, hard work, planning, and help with both field and laboratory tasks. Ms. Christal Niemeyer and Mr. Timothy Bryant were invaluable in providing logistical support. We are also indebted to many undergraduate and graduate students. Without their help and dedication, this project would not have been possible. Lastly, we would like to thank comments from three anonymous reviewers who provided valuable feedback during the review process.

Funding

This project was funded through a grant from the RECOVER Program and the South Florida Water Management District (SFWMD; award #460000227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine McFarland.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1268 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFarland, K., Rumbold, D., Loh, A.N. et al. Effects of freshwater release on oyster reef density, reproduction, and disease in a highly modified estuary. Environ Monit Assess 194, 96 (2022). https://doi.org/10.1007/s10661-021-09489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09489-x

Keywords

Navigation