Skip to main content
Log in

Enhanced landfill’s characterization by using an alternative analytical model for diffusion tests

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Landfills have been extensively used as waste deposits in most of the big cities in the world. Therefore, considerably large urban areas have contamination threats. Engineering solutions applied to prevent or contain soil, and water contamination often involve the application of liners, which are low permeability barriers made of materials such as compacted clay and geomembranes. In many liner applications, once reduced rates of seepage are expected, diffusion has proved to be relevant, if not dominant, to the process of contaminant transport. Normally, diffusivity parameters can be assessed by a single-reservoir pure diffusion test, where a contaminant solution is placed above a saturated soil sample and the solution’s concentration is monitored over time. Once the temporal variation of concentration is measured, the process of back-calculating diffusivity parameters is not standardized. In this paper, an analytical model of the diffusive transport of contaminants is revisited considering the initial and boundary conditions of the pure diffusion test. In this model, the contaminant solution reservoir is included in the analysis domain as an equivalent contaminated soil layer. The analytical solution relies on a series evaluation, which may be a drawback to everyday engineering situations. Therefore, we build a high-accuracy exponential approximation to the solution. Expedited evaluation procedures are proposed to provide reasonable estimates for the fitting parameters. Also, in order to illustrate the applicability of the new solution, test datasets of a soil around the Jockey Club Landfill (JCL) site, one of the major landfills in Latin America, have been modeled. We discuss possible issues of considering linear isotherms to model the sorption characteristics of soils, indicating that convex isotherms, if linearly modeled, may lead to overestimated values of the diffusivity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

Code availability

The authors declare that the codes used in the present paper are presented in the Appendix.

References

  • Barbosa, L. Q., Bernardes, R. S., & Brito, A. J. (2015). Propostas de remediacao de Area degradada por residuos solidos urbanos-estudo de caso aterro Jokey Club brasilia, df. In Proceedings of the XXI Simposio Brasileiro de Recursos Hidricos.

  • Barone, F., Rowe, R., & Quigley, R. (1992). A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in a natural clayey soil. Journal of contaminant hydrology, 10, 225–150.

    Article  CAS  Google Scholar 

  • Barone, F., Yanful, E., Quigley, R., & Rowe, R. (1989). Effect of multiple contaminant migration on diffusion and adsorption of some domestic waste contaminants in a natural clayey soil. Canadian Geotechnical Journal, 26, 189–198.

    Article  CAS  Google Scholar 

  • Bear, J. (1971). Dynamics of fluids in porous media. New York, USA: Elsevier.

    Google Scholar 

  • Bernardes, R. S., Pastore, E. L., & Pereira, J. H. (1999). Caracterizacao geofisica e geoquimica da area de disposicao de residuos urbanos aterro do Joquei Clube em brasilia-df. In Proceedings of the 20th Congresso Brasileiro de Engenharia Sanitaria e Ambiental. Rio de Janeiro, RJ, Brazil.

  • Bharat, T. V. (2014). Analytical model for 1-d contaminant diffusion through clay barriers. Environmental Geotechnics, 1, 210–221.

    Article  Google Scholar 

  • Boscov, M. E. G. (1997). Contribuicao ao Projeto de Sistemas de Contencao de Residuos Perigosos Utilizando Solos Lateriticos. PhD thesis, EPUSP, Sao Paulo, SP, Brazil.

  • Boyce, W. E., & Diprima, R. C. (2008). Elementary Differential Equations. New York, USA: Wiley.

    Google Scholar 

  • Carneiro, G. (2002). Estudo de contaminacao do lencol freatico sob a Area do aterro de lixo do Jockey Club-DF e suas adjacencias. Master’s thesis, UnB, Brasilia, DF, Brazil.

  • Carslaw, H. S., & Jaeger, J. C. (1969). Conduction of Heat in Solids. USA: Oxford University Press.

    Google Scholar 

  • Cavalcante, A. L. B., & Farias, M. M. (2013). Alternative solution for advective-dispersive flow of reagent solutes in clay liners. International Journal of Geomechanics, 13, 49–56.

    Article  Google Scholar 

  • Chakraborty, R., & Ghosh, A. (2011). Finite difference method for computation of 1d pollutant migration through saturated homogeneous soil media. International Journal of Geomechanics, 11, 12–22.

    Article  Google Scholar 

  • Chakraborty, R., & Ghosh, A. (2012). Analysis of 1d contaminant migration through saturated soil media underlying aquifer using fdm. Journal of Hazardous, Toxic, and Radioactive Waste, 16, 229–242.

    Article  CAS  Google Scholar 

  • Chakraborty, R., & Ghosh, A. (2013). Three-dimensional analysis of contaminant migration through saturated homogeneous soil media using fdm. International Journal of Geomechanics, 13, 699–712.

    Article  Google Scholar 

  • Crank, J. (1975). The Mathematics of Diffusion. Oxford, USA: Clarendon Press.

    Google Scholar 

  • Ding, X.-H., Feng, S.-J., Zheng, Q.-T., & Peng, C.-H. (2020). A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system. Computers and Geotechnics, 128,.

    Article  Google Scholar 

  • Freeze, R., & Cherry, J. (1979). Groundwater. Upper Saddle River, USA: Prentice Hall Inc.

    Google Scholar 

  • Gurjao, C. (2005). Estimativa de propriedade geoambientais de camadas impermeabilizantes de solos tropicais. PhD thesis, UnB, Brasilia, DF, Brazil.

  • Junqueira, F. F. (2000). Analise do Comportamento de Residuos Solidos Urbanos e Sistemas Dreno-Filtrantes em diferentes escalas, com referencia ao Aterro do Joquei Clube-DF. PhD thesis, UnB, Brasilia, DF, Brazil.

  • Koide, S., & Bernardes, R. (1998). Contaminacao do lencol freatico sob a area do Jockey Club, distrito federal. In Proceedings of the X Congresso Brasileiro de Aguas Subterraneas. Rio de Janeiro, RJ, Brazil.

  • Kumar, R. P., & Singh, D. N. (2012). Geotechnical centrifuge modeling of chloride diffusion through soils. International Journal of Geomechanics, 12, 327–332.

    Article  Google Scholar 

  • Li, X., Wen, Z., Zhu, Q., & Jakada, H. (2020). Flow transiency on analytical modeling of subsurface solute transport. Environmental Science and Pollution Research.

  • Li, Y., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et cosmochimica acta, 38, 703–714.

    Article  CAS  Google Scholar 

  • Medved, I., & Cerny, R. (2019). Modeling of radionuclide transport in porous media: A review of recent studies. Journal of Nuclear Materials, 526,.

    Article  CAS  Google Scholar 

  • Nogami, J. S., & Villibor, D. F. (1981). Uma nova classificacao de solos para finalidades rodoviarias. In Proceedings of the Simposio Brasileiro de Solos Tropicais em Engenharia. Rio de Janeiro, RJ, Brazil, 1981.

  • Ogata, A., & Banks, R. B. (1961). A solution of the differential equation of longitudinal dispersion in porous media. In Report: U. S. Geol. Surv. Prof. Washington, USA.

    Book  Google Scholar 

  • Ozelim, L. C. S. M., & Cavalcante, A. L. B. (2013). Integral and closed-form analytical solutions to the transport contaminant equation considering 3D advection and dispersion. International Journal of Geomechanics, 13, 686–691.

    Article  Google Scholar 

  • Paz, Y. (2015). Solucao semi-analitica para modelagem das condicoes inicial e de contorno aplicaveis ao ensaio de difusao pura. Master’s thesis, UnB, Brasilia, DF, Brazil.

  • Peng, C.-H., Feng, S.-J., Chen, H.-X., Ding, X.-H., & Yang, C.-B.-X. (2021). An analytical model for one-dimensional diffusion of degradable contaminant through a composite geomembrane cut-off wall. Journal of Contaminant Hydrology, 242,.

    Article  CAS  Google Scholar 

  • Pereira, J. H. F., Pastore, E. L., Bernardes, R. S., Souza, N. M., & Carvalho, J. C. (1997). Estudos geologico-geotecnicos para o planejamento e projeto de disposicao de residuos urbanos do aterro de lixo do Joquei. In Relatorio Final, Vol. 4, Universidade de Brasilia. Brasilia, DF, Brazil.

  • Purkayastha, S., & Kumar, B. (2020). Analytical solution of the one-dimensional contaminant transport equation in groundwater with time-varying boundary conditions. ISH Journal of Hydraulic Engineering, 26(1), 78–83.

    Google Scholar 

  • Rey, G. O. (2019). Metanogenese e variacoes isotopicas do carbono em ambiente de aterro: o aterro controlado do Jockey Club de brasilia-df. Master’s thesis, UnB, Brasilia, DF, Brazil.

  • Rowe, R., Quigley, R., Brachman, R., & Booker, J. (2004). Barrier systems for waste disposal facilities. Spon Press.

  • Rowe, R. K., & Booker, J. R. (1985). 1-d pollutant migration in soils of finite depth. Journal of Geotechnical Engineering, 111, 479–499.

    Article  Google Scholar 

  • Rowe, R. K., & Booker, J. R. (2004). Pollute version 7 reference guide. In User guide. GAEA Technologies Ltd. Whitby, Ontario, Canada.

  • Rowe, R. K., Caers, C. J., & Barone, F. (1988). Laboratory determination of diffusion and distribution coefficients of contaminants using undisturbed clayey soil. Canadian Geotechnical Journal, 25, 108–118.

    Article  CAS  Google Scholar 

  • Shackelford, C. (1991). Laboratory diffusion testing for waste disposala review. Journal of Contaminant Hydrology, 7, 177–217.

    Article  CAS  Google Scholar 

  • Shackelford, C. (2014). The issmge kerry rowe lecture: The role of diffusion in environmental geotechnics. Canadian Geotechnical Journal, 51, 1219–1242.

    Article  Google Scholar 

  • Shackelford, C., & Daniel, D. (1991). Diffusion in saturated soil. i: Background. Journal of Geotechnical Engineering 117, 467–484.

  • Shackelford, C., & Daniel, D. (1991). Diffusion in saturated soil. ii: Results for compacted clay. Journal of Geotechnical Engineering 117, 485–506.

  • Shackelford, C., Daniel, D., & Liljestrand, H. M. (1989). Diffusion of inorganic chemical species in compacted clay soil. Journal of contaminant hydrology, 4, 241–273.

    Article  CAS  Google Scholar 

  • Singh, R. K., Datta, M., & Nema, A. K. (2011). Factoring site age in evaluation of groundwater-contamination hazard rating of abandoned municipal solid-waste landfill sites. Journal of Environmental Engineering, 137, 1092–1098.

    Article  CAS  Google Scholar 

  • Sneddon, I. (1951). Fourier Transforms. New York, USA: McGraw-Hill.

    Google Scholar 

  • Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (2000). Bundle adjustment-a modern synthesis. In Vision Algorithms: Theory and Practice. IWVA 1999. Lecture Notes in Computer Science, vol 1883, T.B., Z.A., and S.R., Eds. Springer, Berlin, Germany.

  • Zekkos, D., Kavazanjian, E., Bray, J. D., Matasovic, N., & Riemer, M. F. (2010). Physical characterization of municipal solid waste for geotechnical purposes. Journal of Geotechnical and Geoenvironmental Engineering, 136, 1231–1241.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the University of Brasilia (UnB).

Funding

This research was supported by: the Brazilian National Council for Scientific and Technological Development (CNPq Grants 304721/2017-4 and 151778/2018-3), the Support Research of the Federal District Foundation (FAP-DF Grants 0193.001563/2017 and 0193.002014/2017-68), the Coordination for the Improvement of Higher Level Personnel (CAPES) finance code 001, the CEB Geração S.A. (RAEESA– Remediation Action for Energy, Environmental and Sustainability in Landfills – SEI 311.000002/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Luis Brasil Cavalcante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

New analytical solution derivation

As discussed, the no-flux conditions can be mathematically represented as:

$$\begin{aligned} \left\{ {\begin{array}{*{20}{c}} {\frac{{\partial {c_w}(x = L + b,t> 0)}}{{\partial x}} = 0}\\ {\frac{{\partial {c_w}(x = 0,t > 0)}}{{\partial x}} = 0} \end{array}} \right. \end{aligned}$$
(30)

Besides, the initial condition for the contaminant concentration can be given as \({c_w}(x,t = 0) = {c_0}u(b - x)u(x)\) , where u(x) denotes the Heaviside step function, which is 0 if \(x < 0\) and 1, otherwise. 6 In order to solve the PDE in Eq. (2) subjected to the initial and boundary conditions described, the Laplace transform with respect to time and the Finite Cosine Fourier transform with respect to space shall be used. Thus, let the Laplace transform \(L_t \{\}\) of the concentration function \(c_w\) be given as (Boyce & Diprima, 2008):

$$\begin{aligned} {L_t}\left\{ {{c_w}(x,t)} \right\} (r) = \int \limits _0^\infty {{c_w}(x,t){e^{ - rt}}dt} = {\widetilde{c}_w}(x,r) \end{aligned}$$
(31)

where r is the transformed time variable.

According to Boyce and Diprima (2008), the Laplace transform of the derivative of a function with respect to the transforming variable can be given as:

$$\begin{aligned} {L_t}\left\{ {\frac{\partial }{{\partial t}}{c_w}(x,t)} \right\} (r) = r{\widetilde{c}_w}(x,r) - {c_w}(x,0) \end{aligned}$$
(32)

On the other hand, according to Sneddon (1951), the Finite Cosine Fourier transform \(F_t\{\}\) can be applied to the function \(c_w\) considering its spatial domain from 0 to \(L + b\) and leads to:

$$\begin{aligned} {F_t}\left\{ {{c_w}(x,t)} \right\} (m) = \frac{2}{{L + b}}\int \limits _0^{L + b} {{c_w}(x,t)\cos \left( {\frac{{m\pi x}}{{L + b}}} \right) dx} = {\widehat{c}_w}(m,t) \end{aligned}$$
(33)

where m is the transformed space variable.

Sneddon (1951) also explores the relation between the Finite Cosine Fourier transform of derivatives of the transformed function and states that:

$$\begin{aligned} {F_t}\left\{ {\frac{{{\partial ^2}}}{{\partial {x^2}}}{c_w}(x,t)} \right\} (m) = \\ - {\left( {\frac{{m\pi }}{{L + b}}} \right) ^2}{\widehat{c}_w}(m,t) - \frac{2}{{L + b}}\left[ {\frac{\partial }{{\partial x}}{c_w}(0,t) + {{( - 1)}^{m + 1}}\frac{\partial }{{\partial x}}{c_w}(L + b,t)} \right] \end{aligned}$$
(34)

This way, by applying the Laplace transform with respect to time on Eq. (2), the following is obtained:

$$\begin{aligned} r{\widetilde{c}_w}(x,r) - {c_w}(x,0) = \frac{{{D^*}}}{R}\frac{{{\partial ^2}{{\widetilde{c}}_w}}}{{\partial {x^2}}} \end{aligned}$$
(35)

Now, by both applying the Finite Cosine Fourier transform with respect to space on Eq. (35) and considering the conditions in Eq. (30), one shall get:

$$\begin{aligned} r{\widehat{\widetilde{c}}_w} - {F_t}\left\{ {{c_w}(x,0)} \right\} (m) = - \frac{{{D^*}}}{R}{\left( {\frac{{m\pi }}{{L + b}}} \right) ^2}{\widehat{\widetilde{c}}_w} \end{aligned}$$
(36)

where for simplicity, \({\widehat{\widetilde{c}}_w} = {\widehat{\widetilde{c}}_w}(m,r)\) is the double transformed function. The Finite Cosine Fourier transform of the initial concentration distribution is:

$$\begin{aligned} {F_t}\left\{ {{c_w}(x,0)} \right\} (m) = \frac{2}{{L + b}}\int \limits _0^{L + b} {{c_0}u(x - b)u(x)\cos \left( {\frac{{m\pi x}}{{L + b}}} \right) dx} = \frac{{2{c_0}}}{{m\pi }}\sin \left( {\frac{{bm\pi }}{{L + b}}} \right) \end{aligned}$$
(37)

Thus, from Eq. (36), one may get:

$$\begin{aligned} {\widehat{\widetilde{c}}_w} = \frac{{\frac{{2{c_0}}}{{m\pi }}\sin \left( {\frac{{bm\pi }}{{L + b}}} \right) }}{{r + \frac{{{D^*}}}{R}{{\left( {\frac{{m\pi }}{{L + b}}} \right) }^2}}} \end{aligned}$$
(38)

In order to obtain the function \({c_w}(x,t)\) from Eq. (38), both Laplace and Finite Cosine Fourier transforms need to be inverted. By applying the inverse transforms presented by Boyce and Diprima (2008) and Sneddon (1951), the solution in Eq. (5) follows.

Computational code

In order to make the usage of the formulas and the methodology hereby presented easier, a Python code is provided. The code below defines the function NLFitECL, which gets the dataset, performs the nonlinear regression, and outputs a plot with the best-fit curve. If specific experimental parameters are known (\(H, L, n, K_d,\rho _d\)), the value of \(\alpha\) is calculated and the fitting parameters are \(c_0\) and \(D^*/RL^2\). Otherwise, when those parameters are not available, the best-fit parameters are \(\alpha\), \(c_0\) and \(D^*/RL^2\). The R-squared value is also presented in the legend of the plot.

Important remarks:

  • The function NLFitECL takes as inputs two lists or numpy arrays. The first one is made of the pairs \((t_i, c_i)\), while the last one is related to other experimental parameters \([H, L, n, K_d, \rho _d]\). If such parameters are not available, simply input an empty list as [].

  • The units of \(c_i\) and \(t_i\) must be consistent with the values of the experimental parameters. For simplicity we consider units as mg/L and h, respectively.

  • The value of \(D^*/RL^2\) is outputted in units of time raised to -1, therefore \(h^{-1}\).

  • As previously discussed, in order to correctly obtain the diffusivity parameters, the experiment must be carried out until near-equilibrium is reached.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozelim, L.d., Paz, Y.P.L., da Cunha, L.S. et al. Enhanced landfill’s characterization by using an alternative analytical model for diffusion tests. Environ Monit Assess 193, 739 (2021). https://doi.org/10.1007/s10661-021-09475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09475-3

Keywords

Navigation