Skip to main content
Log in

Trace element fluxes during the “Anthropocene” in a large South American industrial and port area (Santos and São Vicente estuarine system, SE, Brazil)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The worldwide evidence of human activities on the environment led the scientific community to recognize a new geologic time unit known as the “Anthropocene.” Since the twentieth century, urbanization and industrialization needs driven by population and economic growth have impacted several ecosystems including the estuaries. To assess the contamination, provenance, and fluxes of trace elements (As, Cr, Cu, Ni, Pb, Sc, V, and Zn) over the last century, a geochemical and chemometric technique was employed in sediment cores of an industrial and port region of international importance, the Santos and São Vicente Estuarine System (SSVES). The results indicated low contamination, with the highest enrichment factors (EFs) for Cu (EF = 3.1), Pb (EF = 2.7), Zn (EF = 2.4), and As (EF = 2.3) found next to the harbor area. The Pre-industrial records confirm the relatively high concentrations of As and its naturally enriched occurrence on the Brazilian shelf. Sediment accumulation rates and trace element fluxes showed a general increase over the years, since the early 1960s, associated with the “Great Acceleration” of the mid-twentieth century. These alterations are human-induced and include urbanization and industrialization. Nonetheless, as the contents and enrichment of trace elements indicate that the region is not severely polluted, we hypothesize that the contamination in the SSVES is likely related to the drainage and erosion of the urbanized adjacent area, rather than direct disposal of inorganic contaminants from the industrial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article or its supplementary information.

References

  • Abessa, D. M. S., Carr, R. S., Sousa, E. C. P. M., Rachid, B. R. F., Zaroni, L. P., Gasparro, M. R., Pinto, Y. A., Bícego, M. C., Hortellani, M. A., Sarkis, J. E. S., & Muniz, P. (2008). Integrative ecotoxicological assessment of contaminated sediments in a complex tropical estuarine system. In: T.N. Hoffer. (Org.). Marine Pollution: New Research. New York City: Nova Science Publishers Inc., pp.1–36.

  • Abreu, S. F. (1973). Recursos minerais do Brasil, 2 ed. EUSP, São Paulo.

  • Aguiar, V. M. C., Lima, M. N., Abuchacra, R. C., Abuchacra, P. F. F., Baptista Neto, J. A., Borges, H. V., & Oliveira, V. C. (2016). Ecological risks of trace metals in Guanabara Bay, Rio de Janeiro, Brazil: An index analysis approach. Ecotoxicology and Environmental Safety, 133, 306–3015.

    Article  CAS  Google Scholar 

  • Al-Rashdi, S., Arabi, A. A., Howari, F. M., & Siad, A. (2015). Distribution of heavy metals in the coastal area of Abu Dhabi in the United Arab Emirates. Marine Pollution Bulletin, 97, 494–498. https://doi.org/10.1016/j.marpolbul.2015.05.052

    Article  CAS  Google Scholar 

  • Álvarez-Iglesias, P., Andrade, A., Rey, D., Quintana, B., Bernabeu, A. M., López-Pérez, A., & Rubio, B. (2020). Assessment and timing of the anthropogenic imprint and fisheries richness in marine sediments from Ría de Muros (NW Iberian Peninsula). Quaternary International, 566–567, 337–356. https://doi.org/10.1016/j.quaint.2020.05.005

    Article  Google Scholar 

  • Ávarez-Vázquez, M. A., Álvarez-Iglesias, P., Uña-Álvarez, E., Quintana, B., Caetano, M., & Prego, R. (2020). Industrial supply of trace elements during the “Anthropocene”: A record in estuarine sediments from the Ria of Ferrol (NW Iberian Peninsula). Marine Chemistry, 223, 103825. https://doi.org/10.1016/j.marchem.2020.103825

    Article  CAS  Google Scholar 

  • Andrade, R. L. B., Hatje, V., Masqué, P., Zurbrick, C. M., Boyle, E. A., & Santos, W. P. C. (2017). Chronology of anthropogenic impacts reconstructed from sediment records of trace metals and Pb isotopes in Todos os Santos Bay (NE Brazil). Marine Pollution Bulletin, 125(1–2), 459–471. https://doi.org/10.1016/j.marpolbul.2017.07.053

    Article  CAS  Google Scholar 

  • Angeli, J. L. F., Rubio, B., Kim, B. S. M., Ferreira, P. A. L., Siegle, E., & Figueira, R. C. L. (2019). Environmental changes reflected by sedimentary geochemistry for the last one hundred years of a tropical estuary. Journal of Marine Systems, 189, 36–49. https://doi.org/10.1016/j.jmarsys.2018.09.004

    Article  Google Scholar 

  • Angeli, J. L. F., Kim, B. S. M., Paladino, I. M., Nagai, R. H., Martins, C. C., Mahiques, M. M., & Figueira, R. C. L. (2020). Statistical assessment of background levels for metal contamination from a subtropical estuarine system in the SW Atlantic (Paranaguá Estuarine System. Brazil). Journal Sediment Environment, 5, 137–150.

    Article  Google Scholar 

  • Appleby, P. G., & Oldfield, F. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA, 5, 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

    Article  CAS  Google Scholar 

  • Bayens, W., Mirlean, N., Bundschuh, J., de Winter, N., Baisch, P., Silva Júnior, F. M. R., & Gao, Y. (2019). Arsenic enrichment in sediment and beaches of Brazilian coastal waters: A review. Science of the Total Environment, 681, 143–154. https://doi.org/10.1016/j.scitotenv.2019.05.126

    Article  CAS  Google Scholar 

  • Bibi, M., Wargreich, M., & Iqbal, S. (2020). Trace metals as markers for historical anthropogenic contamination: Evidence from the Peshawar Basin, Pakistan. Science of the Total Environment, 703, 2020. https://doi.org/10.1016/j.scitotenv.2019.134926

    Article  CAS  Google Scholar 

  • Birch, G. F. (2017). Determination of sediment metal background concentrations and enrichment in marine environments – a critical review. Science Total Environment, 580, 813–831. https://doi.org/10.1016/j.scitotenv.2016.12.028

    Article  CAS  Google Scholar 

  • Birch, G. F. (2018). A review of chemical-based sediment quality assessment methodologies for the marine environment. Marine Pollution Bulletin, 133, 218–232. https://doi.org/10.1016/j.marpolbul.2018.05.039

    Article  CAS  Google Scholar 

  • Bordon, I. C. A. C., Sarkis, J. E. S., Gobbato, G. M., Hortellani, M. A., & Peixoto, C. M. (2011). Metal concentration in sediments from the Santos Estuarine System: A recent assessment. Journal of the Brazilian Chemical Society, 22(10), 1858–1865.

    Article  CAS  Google Scholar 

  • Braga, E. S., Bonetti, C. V. D. H., Burone, L., & Bonetti Filho, J. (2000). Eutrophication and bacterial pollution caused by industrial and domestic wastes at Baixada Santista estuarine system, Brazil. Marine Pollution Bulletin, 40, 165–173. https://doi.org/10.1016/S0025-326X(99)00199-X

    Article  CAS  Google Scholar 

  • Bregunce, D. T., Jordan, E. J., Dziedzic, M., Maranho, L. T., & Aparecida Cubas, A. S. (2011). Evaluation of the water quality of the Müller’s Ribeirão. Curitiba-PR. Brazilian Journal of Water Resources, 16, 39–47. https://doi.org/10.21168/rbrh.v16n3.p39-47

  • Buruaem, L. M., Castro, I. B., Hortellani, M. A., et al. (2013). Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil. Estuarine, Coastal and Shelf Science, 130, 179–189.

    Article  Google Scholar 

  • Cagnin, R. C., Quaresma, V. S., Chaillou, G., Franco, T., & Bastos, A. C. (2017). Arsenic enrichment in sediments in the Eastern continental shelf of Brazil. Science of the Total Environment, 607–608, 304–316. https://doi.org/10.1016/j.scitotenv.2017.06.162

    Article  CAS  Google Scholar 

  • CETESB (Companhia de tecnologia de saneamento ambiental). (2001). Santos and São Vicente Estuarine System - Technical Report. https://cetesb.sp.gov.br/praias/publicacoes-relatorios/. Accessed 17 October 2018 (in Portuguese)

  • Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: A chemometric and geochemical approach. Chemosphere, 87, 945–953. https://doi.org/10.1016/j.chemosphere.2012.01.055

    Article  CAS  Google Scholar 

  • Chakraborty, P., Ramteke, D., Chakraborty, S., & Nagender Nath, B. (2014). Changes in metal contamination levels in estuarine sediments around India - an assessment. Marine Pollution Bulletin, 78, 15–25. https://doi.org/10.1016/j.marpolbul.2013.09.044

    Article  CAS  Google Scholar 

  • Cochran, J. K., Hirschberg, D. J., Wang, J., & Dere, C. (1998). Atmospheric deposition of metals to coastal waters (Long Island Sound. New York. USA): Evidence from salt- marsh deposits. Estuarine, Coastal and Shelf Science, 46, 503–522.

    Article  CAS  Google Scholar 

  • CODESP (Companhia Docas do estado de São Paulo). (2011). Port of Santos: Annual Report 2011. http://201.33.127.41/down/relatorio/Relatorio2011.pdf. Accessed 17 October 2018.

  • CONAMA. Conselho Nacional do Meio Ambiente. Resolução n.454. (2012). Estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional. Available at: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=693

  • Costa, L. F., & Wallner-Kersanach, M. (2013). Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil. Environmental Monitoring and Assessment, 185, 6767–6781. https://doi.org/10.1007/s10661-013-3063-0

    Article  CAS  Google Scholar 

  • Crutzen, P. J., & Stoermer, E. F. (2000). The “Anthropocene.” Global Change Newsletter, 41, 17–18.

    Google Scholar 

  • Ferreira, P. A. L., Ribeiro, A. P., Nascimento, M. G., Martins, C. C., Mahiques, M. M., Montone, R. C., & Figueira, R. C. L. (2013). 137Cs in marine sediments of Admiralty Bay. King George Island Antarctica. Science Total Environment, 443, 505–510. https://doi.org/10.1016/j.scitotenv.2012.11.032

    Article  CAS  Google Scholar 

  • Ferreira, P. A. L., Figueira, R. C. L., Siegle, E., Neto, N. E. A., Martins, C. C., Schettini, C. A. F., Maciel, P. M., García-Rodriguez, F., & Mahiques, M. M. (2016). Using a cesium-137 (137Cs) sedimentary fallout record in the South Atlantic Ocean as a supporting tool for defining the Anthropocene. Anthropocene, 14, 34–45.

    Article  Google Scholar 

  • Figueira, R. C. L., Tessler, M. G., Mahiques, M. M., & Fukumoto, M. M. (2007). Is there a technique for the determination of sedimentation rates based on calcium carbonate content? A Comparative Study on the Southeastern Brazilian Shelf. Soils and Foundations, 47, 649–656. https://doi.org/10.3208/sandf.47.649

    Article  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia. Spain) using chemometric analysis: A case study. Science of the Total Environment, 330, 115–129. https://doi.org/10.1016/j.scitotenv.2004.03.03

    Article  CAS  Google Scholar 

  • Förstner, U., & Salomons, W. (1980). Trace metals analysis on polluted sediments Part I: Assessments of sources and intensities. Environmental Technology Letters, 1, 495–505. https://doi.org/10.1080/09593338009384006

    Article  Google Scholar 

  • Geng, J., Wang, Y., & Luo, H. (2015). Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China. Marine Pollution Bulletin, 101, 914–921. https://doi.org/10.1016/j.marpolbul.2015.10.066

    Article  CAS  Google Scholar 

  • Gonçalves, C., Figueira, R. C. L., Sartoretto, J. R., Salaroli, A. B., Ribeiro, A. P., Ferreira, P. A. L., & Mahiques, M. M. (2013). Reconstruction of historical trends in potentially toxic elements from sediment cores collected in Bertioga Channel, southeastern Brazil. Brazilian Journal of  Oceanography, 61(2), 149–160. https://doi.org/10.1590/S1679-87592013000200007

  • Gramani, M. F., & Kanji, M. A. (2001). Inventário e análise das corridas de detritos no Brasil. In: Anais da 3° Conferência Brasileira sobre Estabilidade de Encostas. Rio de Janeiro. RJ.

  • Hatje, V., & Barros, F. (2012). Overview of the 20th century impact of trace metal contamination in the estuaries of Todos os Santos Bay: Past, present and future scenarios. Marine Pollution Bulletin, 64, 2603–2614. https://doi.org/10.1016/j.marpolbul.2012.07.009

    Article  CAS  Google Scholar 

  • Hortellani, M. A., Sarkis, J. E. S., Abessa, D. M. S., & Sousa, E. C. P. M. (2008). Assessment of metallic element contamination in contamination in sediments from the Santos – São Vicente estuarine System. Quimica Nova, 31, 10–19. https://doi.org/10.1590/S0100-40422008000100003

    Article  CAS  Google Scholar 

  • Hosokawa, S., Naito, R., & Nakamura, Y. (2020). Spatial patterns of concentrations of Cu. Zn. Cd and Pb in marine sediments from Japanese port areas. Regional Studies in Marine Science, 35, 101135. https://doi.org/10.1016/j.rsma.2020.101135

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2000). Available at: http://www.ibge.gov.br

  • Jesus, M. S. S., Frontalini, F., Bouchet, V. M. P., Yamashita, C., Sartoretto, J. R., Figueira, R. C. L., & Sousa, S. H. M. (2020). Reconstruction of the palaeo-ecological quality status in an impacted estuary using benthic foraminifera: The Santos Estuary (São Paulo state. SE Brazil). Marine Environment Research, 162, 105121. https://doi.org/10.1016/j.marenvres.2020.105121

  • Jiang, J., Wang, J., Liu, S., Lin, C., He, M., & Liu, X. (2013). Background, baseline, normalization, and contamination of heavy metals in the Liao River Watershed sediments of China. Journal of Asian Earth Science, 73:87–94. https://doi.org/10.1016/j.jseaes.2013.04.014

  • Kanji, M. A., Massad, F., & Cruz, P. T. (2003). Debris flows in areas of residual soil: occurrence and characteristics. In: Abstract of the International Workshop on Occurrence and Mechanism of Flows in Natural Slopes and Earthfills. Sorrento. Italy.

  • Kersten, M., & Forstner, U. (1995). Speciation of trace metals in sediments and combustion waste. In: Ure AM. Davidson CM (eds) Chemical speciation in the environment. Chapman & Hall. Glasgow, 234–275.

  • Kim, B. S. M., Salaroli, A. B., Ferreira, P. A. L., Sartoretto, J. R., Mahiques, M. M., & Figueira, R. C. L. (2016). Spatial distribution and enrichment assessment of heavy metal in surface sediments form Baixada Santista, Southeastern Brazil. Marine Pollution Bulletin, 103, 333–338. https://doi.org/10.1016/j.marpolbul.2015.12.041

    Article  CAS  Google Scholar 

  • Kim, B. S. M., Angeli, J. L. F., Ferreira, P. A. L., Mahiques, M. M., & Figueira, R. C. L. (2018). Critical evaluation of different methods to calculate the Geoaccumulation Index for environmental studies: A new approach for Baixada Santista – Southeastern Brazil. Marine Pollution Bulletin, 127, 548–552. https://doi.org/10.1016/j.marpolbul.2017.12.049

    Article  CAS  Google Scholar 

  • Kim, B. S. M., Angeli, J. L. F., Ferreira, P. A. L., Mahiques, M. M., & Figueira, R. C. L. (2019). A multivariate approach and sediment quality index evaluation applied to Baixada Santista. Southeastern Brazil. Marine Pollution Bulletin, 143, 72–80. https://doi.org/10.1016/j.marpolbul.2019.04.040

    Article  CAS  Google Scholar 

  • Liu, M., Zhang, A., Liao, Y., Chen, B., & Fan, D. (2015). The environment quality of heavy metals in sediments from the central Bohai Sea. Marine Pollution Bulletin, 100, 534–543. https://doi.org/10.1016/j.marpolbul.2015.09.001

    Article  CAS  Google Scholar 

  • Ludwig, C., Steffen, W. (2018). The 1950s as the beggining og the Anthropocene. Encyclopedia of the Anthropocene, 1, 45-56. https://doi.org/10.1016/B978-0-12-809665-9.09940-7

  • Luiz-Silva, W., Matos, R. H. T., Kristosch, G. C., & Machado, W. (2002). Geochemistry and index of geoaccumulation of Mercury in surface sediments from Santos-Cubatão Estuary. State of São Paulo. Brazil. Quimica Nova, 25(5), 53–756. https://doi.org/10.1590/S0100-40422002000500009

  • Luiz-Silva, W., Machado, W., & Matos, R. H. (2008). Multi-elemental contamination and historic record in sediments from the Santos-Cubatão estuarine system, Brazil. Journal of the Brazilian Chemical Soceity, 19(8), 1490–1500. https://doi.org/10.1590/S0103-50532008000800008

  • Manju, M. N., Kumar, C. S. R., Resmi, P., Gireeshkumar, T. R., Joseph, M. M., Salas, P. M., & Chandramohanakumar, N. (2020). Trace metal distribution in the sediment cores of mangrove ecosystems along northern Kerala coast, south-west coast of India. Marine Pollution Bulletin, 153, 110946. https://doi.org/10.1016/j.marpolbul.2020.110946

  • Martins, C. C., Mahiques, M. M., Bícego, M. C., Fukumoto, M. M., & Montone, R. C. (2007). Comparison betweeen anhtropogenic hydrocarbons and magnetic susceptibility in sediment cores from the Santos Estuary, Brazil. Marine Pollution Bulletin, 54, 226–246.

    Article  Google Scholar 

  • Martins, C. C., Bícego, M. C., Mahiques, M. M., Figueira, R. C. L., Tessler, M. G., & Montone, R. C. (2010). Depositional history of sedimentary linear alkylbenzenes (LABs) in a large South American industrial coastal area (Santos Estuary. Southeastern Brazil). Environmental Pollution, 158(11), 3355–3364. https://doi.org/10.1016/j.envpol.2010.07.040

  • Mirlean, N., & Roisenberg, A. (2006). The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, 143, 335–340. https://doi.org/10.1016/j.envpol.2005.11.022

    Article  CAS  Google Scholar 

  • Mirlean, N., Medeanic, S., Garcia, F. A., Travassos, M. P., & Baisch, P. (2012). Arsenic enrichment in shelf and coastal sediments of the Brazilian subtropics. Continental Shelf Research, 35, 129–136. https://doi.org/10.1016/j.csr.2012.01.006

    Article  Google Scholar 

  • Moalla, S. M. N., Awadallah, M. N., Rashed, M. N., & Soltan, M. E. (1998). Distribution and chemical fractionation of some heavy metals in bottom sediments of Lake Nasser. Hydrobiologia, 31, 31–40.

  • Oliveira, S. M. B., Silva, P. S. C., Mazzilli, B. P., Favaro, D. I. T., & Saueia, C. H. (2007). Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary. southern Brazil. Applied Geochemistry, 22, 837–850. https://doi.org/10.1016/j.apgeochem.2006.12.017

    Article  CAS  Google Scholar 

  • Ontiveros-Cuadras, J. F., Ruiz-Fernández, A. N., Pérez-Bernal, L. H., de la Peña, J. L., & Sanchez-Cabeza, J. A. (2019). Recent trace metal enrichment and sediment quality assessment in an anthropized coastal lagoon (SE Gulf of California) from 210Pb-dated sediment cores. Marine Pollution Bulletin, 149, 110653. https://doi.org/10.1016/j.marpolbul.2019.11065

    Article  CAS  Google Scholar 

  • Perrota, M. M., Salvador, E. D., Lopes, R. C., D’Agostino, L. Z., Perrufo, N., Gomes, S. D., Sachs, L. L. D., Meira, V. T., & Lacerda, J. V. (2005). Mapa geológico do estado de São Paulo (Geologic map of the state of São Paulo). scale 1: 750.000. CPRM. São Paulo.

  • Ramesh, R., Chen, Z., Cummins, V., et al. (2015). Land-ocean interactions in the Coastal Zone: Past, present and future. Anthropocene, 12, 85–98. https://doi.org/10.1016/j.ancene.2016.01.005

    Article  Google Scholar 

  • RCoreTeam. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980. https://doi.org/10.1016/S0025.326X(00)00039.45

  • Rubio, B., Álvarez-Iglesias, P., & Vilas, F. (2010). Diagenesis and anthropogenesis of metals in the recent Holocene sedimentary record of the Ría de Vigo (NW Spain). Marine Pollution Bulletin, 60, 1122–1129. https://doi.org/10.1016/j.marpolbul.2010.04.014

    Article  CAS  Google Scholar 

  • Sá, F., Sanders, C. J., Patchineelam, S. R., Machado, E. V., & Lombardi, A. T. (2015). Arsenic fractionation in estuarine sediments: Does coastal eutrophication influence As behavior? Marine Pollution Bulletin, 96, 496–501.

    Article  Google Scholar 

  • Salaroli, A. B., Kim, B. S. M., Angeli, J. L. F., & Figueira, R. C. L. (2018). Trace elements in an adjacent channel of an anthropized area: A case study of Baixada Santista. Southeastern Brazil. Ecotoxicol Environment Contamination, 13(1), 23–31.

    Google Scholar 

  • Silva, P. S. C., Damatto, S. R., Maldonado, C., Fávaro, D. I. T., & Mazzilli, B. P. (2011). Metal distribution in sediment cores form São Paulo State coast. Brazilian Marine Pollution Bulletin, 62, 1130–1139. https://doi.org/10.1016/j.marpolbul.2011.02.046

    Article  CAS  Google Scholar 

  • Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are human now overwhelming the great forces of nature? Ambio, 36, 614–621.

    Article  CAS  Google Scholar 

  • Tessler, M. G., Figueira, R. C. L., Mahiques, M. M., Fukumoto, M. M., & Ciapina, E. M. P. (2006). Sedimentation rates and contamination levels by heavy metals at the shallow sedimentary columns from Santos estuary and bay. SP. Brazilian Journal of Coastal Research, 39, 713–717.

    Google Scholar 

  • Torres, R. J., Abessa, D. M. S., Santos, F. C., Maranho, L. A., Davanso, M. B., Nascimento, M. R. L., & Mozeto, A. A. (2009). Effects of dredging operations on sediment quality: Contaminant mobilization in dredged sediments from the Porto of Santos. Journal of Soils and Sediments, 9, 420–432.

    Article  CAS  Google Scholar 

  • Tramonte, K. M., Figueira, R. C. L., Ferreira, P. A. L., Ribeiro, A. P., Batista, M. F., & Mahiques, M. M. (2016). Environmental availability of potentially toxic elements in estuarine sediments of the Cananéia-Iguape coastal system. Southeastern Brazilian Marine Pollution Bulletin, 103, 250–269. https://doi.org/10.1016/j.marpolbul.2015.12.011

    Article  CAS  Google Scholar 

  • Tramonte, K. M., Figueira, R. C. L., Majer, A. P., Ferreira, P. A. L., Batista, M. F., Ribeiro, A. P., & Mahiques, M. M. (2018). Geochemical behavior, environmental availability, and reconstruction of historical trends of Cu, Pb, and Zn in sediment cores of the Cananéia-Iguape coastal system. Southeastern Brazilian Marine Pollution Bulletin, 127, 1–9. https://doi.org/10.1016/j.marpolbul.2017.11.016

    Article  CAS  Google Scholar 

  • Turner, A. (2010). Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 60, 159–171. https://doi.org/10.1016/j.marpolbul.2009.12.004

    Article  CAS  Google Scholar 

  • Turney, C. S. M., Palmer, J., Maslin, M. A., et al. (2018). Global peak in atmospheric radiocarbon provides a potential definition for the onset of the Anthropocene Epoch in 1965. Scientific Reports, 8, 3293. https://doi.org/10.1038/s41598-018-20970-5

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme). (1995). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Reference Methods for Marine Pollution Studies No. 63 (February).

  • USEPA (United States Environmental Protection Agency). (1996). Method 3050B, acid digestion of sediments, sludges and soil. Revision 2. https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. Accessed 18 October 2018

  • Varol, M., Canpolat, O., Eris, K. K., & Çaglar, M. (2020). Trace metal in core sediments from a deep lake in eastern Turkey: vertical concentration profiles. eco-environmental risks and possible sources. Ecotoxicology and Environmental Safety, 189, 110060. https://doi.org/10.1016/j.ecoenv.2019.110060

  • Xavier, D. A., Santos, V. F., Miranda, A. G. O., & Barrêdo, J. F. (2020). Determination of background geochemistry of an Amazon estuary: The Cuñani Estuary – Amapá. Marine Pollution Bulletin, 155, 111144. https://doi.org/10.1016/j.marpolbul.2020.111144

    Article  CAS  Google Scholar 

  • Waters, C. N., Zalasiewicz, J., Summerhayes, C., et al. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269). aad2622. https://doi.org/10.1126/science.aad2622.

  • Zalasiewicz, J., Waters, C. N., Williams, M., et al. (2015). When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 383, 196–203.

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54, 1051–1070. https://doi.org/10.1006/ecss.2001.0879

    Article  CAS  Google Scholar 

  • Zoller, W. H., Gladney, E. S., & Duce, R. A. (1974). Atmospheric concentrations and sources of trace metals at the south pole. Science, 183, 198–200.

  • Zundt, C. (2006). Baixada Santista: uso. expansão e ocupação do solo. estruturação de rede urbana regional e metropolização. In: Cunha. J. M. P. (Org.). Novas metrópoles paulistas: população. vulnerabilidade e segregação. Campinas. SP: Nepo/Unicamp. 305–336.

Download references

Funding

This study was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and from the São Paulo Science Foundation (FAPESP, grant 2009/01211–0; 2011/50581–4 and 2017/08987–0), the Oceanographic Institute of the University of São Paulo (IOUSP), and the Laboratory of Inorganic Marine Chemistry (LaQiMar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Lourenço Friedmann Angeli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angeli, J.L.F., Sartoretto, J.R., Kim, B.S.M. et al. Trace element fluxes during the “Anthropocene” in a large South American industrial and port area (Santos and São Vicente estuarine system, SE, Brazil). Environ Monit Assess 193, 594 (2021). https://doi.org/10.1007/s10661-021-09378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09378-3

Keywords

Navigation