Skip to main content

Advertisement

Log in

Habitat prediction modelling for vulture conservation in Gangetic-Thar-Deccan region of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ecologically and economically important obligate scavengers like vultures are under threat of extinction in the old world. Several resident and migratory vulture sites and individuals are hosted by the Gangetic-Thar-Deccan region of India with varied landscapes. The landscape is under threat from anthropogenic activities and climate change impacting the habitat. Therefore, habitat suitability of vultures was analysed using species distribution model, MaxEnt, ensemble of global circulation models (CCSM4, HadGEM2AO and MIROC5), citizen science and expert collected data. Altogether, 51 models were developed and their robustness was assessed to be good for conservation purpose (AUC range 0.719–0.906). Predicted unsuitable and suitable area categories of all vultures, resident vultures and migratory vultures were identified for the present and future years (2050 and 2070) under moderate and extreme emission scenarios (RCP 4.5 and RCP 8.5). The short-term and long-term area suitability change varied between 1 and 3%. Area suitability differences were also noticed among larger (global) and smaller (local) geographical areas. The bioenvironmental parameters (land use, land cover and human footprint) played a major role in habitat determination in the current scenario. Bioclimatic factors, like precipitation parameters (precipitation seasonality bio 15 and annual precipitation bio12) and temperature parameters (isothermality bio 3 and temperature seasonality bio04), were the main model determining covariates for future prediction. An earlier hypothesis of higher suitability of forest and lower suitability of agriculture area tested in this study stood modified. Implications of the results are discussed, and conservation strategies are suggested with an advice of global strategy and local execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Modified from Jha and Jha (20202021)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

Available in the manuscript (sources cited).

References

  • Ahmad, R., Khuroo, A. A., Hamid, M., Charles, B., & Rashid, I. (2019). Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodiversity and Conservation, 28(8–9), 2319–2344. https://doi.org/10.1007/s10531-019-01775-y

    Article  Google Scholar 

  • Anoop, N. R., Babu, S., Nagarajan, R., & Sen, S. (2020). Identifying suitable reintroduction sites for the White-rumped Vulture (Gyps bengalensis) in India’s Western Ghats using niche models and habitat requirements. Ecological Engineering, 158(2020), 106034. https://doi.org/10.1016/j.ecoleng.2020.106034

    Article  Google Scholar 

  • Arkumarev, V., Dobrev, V., Stoychev, S., Dobrev, D., Demerdzhiev, D., & Nikolov, S. C. (2018). Breeding performance and population trend of the Egyptian Vulture Neophron percnopterus in Bulgaria: Conservation implications. Ornis Fennica, 95, 00–00. Retrieved 09 February 2021 from https://www.researchgate.net/publication/326988690

  • Arrondo, E., Moleón, M., Cortés-Avizanda, A., Jiménez, J., Beja, P., Sánchez-Zapata, J. A., & Donazar, J. A. (2018). Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biological Conservation, 219, 46–52. https://doi.org/10.1016/j.biocon.2017.12.039

    Article  Google Scholar 

  • Arumoogum, N., Schoeman, M. C., & Ramdhani, S. (2019). The relative influence of abiotic and biotic factors on suitable habitat of Old World fruit bats under current and future climate scenarios. Mammalian Biology, 98, 188–200.

    Article  Google Scholar 

  • Ashrafzadeh, M. R., Naghipour, A. A., Haidarian, M., Kusza, S., & Pilliod, D. S. (2019). Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation, 19, e00637. https://doi.org/10.1016/j.gecco.2019.e00637

    Article  Google Scholar 

  • Baah-Acheamfour, M., Bourque, C.P.-A., Meng, F.-R., & Swift, D. E. (2017). Incorporating interspecific competition into species-distribution mapping by upward scaling of small-scale model projections to the landscape. PLoS One, 12(2), e0171487. https://doi.org/10.1371/journal.pone.0171487

    Article  CAS  Google Scholar 

  • Bahadur, K. C. K., Koju, N. P., Bhusal, K. P., Low, M., Ghimire, S. K., Ranabhat, R., & Panthi, S. (2019). Factors influencing the presence of the endangered Egyptian vulture Neophron percnopterus in Rukum, Nepal. Global Ecology and Conservation, 20(2019), e00727. https://doi.org/10.1016/j.gecco.2019.e00727

    Article  Google Scholar 

  • Baldwin, R. A. (2009). Use of maximum entropy modelling in wildlife research. Entropy, 11(4), 854–866.

    Article  Google Scholar 

  • Bosch, J., Mardones, F., Pérez, A., la Torre, A. D., & Muñoz, A. J. (2014). A maximum entropy model for predicting wild boar distribution in Spain. Spanish Journal of Agricultural Research, 12(4), 984–999.

    Article  Google Scholar 

  • Cable, A. B., O’Keefe, J. M., Deppe, J. L., Hohoff, T. C., Taylor, S. J., & Davis, M. A. (2021). Habitat suitability and connectivity modeling reveal priority areas for Indiana bat (Myotis sodalis) conservation in a complex habitat mosaic. Landscape Ecology, 36, 119–137. https://doi.org/10.1007/s10980-020-01125-2

    Article  Google Scholar 

  • Carvalho, J. S., Graham, B., Bocksberger, G., Maisels, F., Williamson, E.A., Wich, S., Sop, T., Amarasekaran, B., Barca, B., Barrie, A., Bergl, R .A., Boesch, C., Boesch, H., Brncic, T. M., Buys, B., Chancellor, R., Danquah, E., Doumbé, O. A., Le-Duc, S. Y., … & Kuhl, H. S. (2020). Predicting range shifts of African apes under global change scenarios. Retrieved 10 February 2021 from https://www.researchgate.net/publication/342476747 https://doi.org/10.1101/2020.06.25.168815

  • Chhangani, A. K. (2007). Sightings and nesting sites of Red-headed Vulture Sarcogyps calvus in Rajasthan, India. Indian Birds, 3(6), 218–221.

    Google Scholar 

  • Chhangani, A. K. (2009). Status of vulture population in Rajasthan, India. Indian Forester, 135(2), 239–240.

  • Chomba, C., & M’Simuko, E. (2013). Nesting patterns of raptors; White backed vulture (Gyps africanus) and African fish eagle (Haliaeetus vocifer), in Lochinvar National Park on the Kafue Flats, Zambia. Open Journal of Ecology, 3(5), 325–330. https://doi.org/10.4236/oje.2013.35037

    Article  Google Scholar 

  • Corovic, J., Popovic, M., Cogalniceanu, D., Carretero, M. A., & Crnobrnja-Isailovic, J. (2018). Distribution of the meadow lizard in Europe and its realized ecological niche model. Journal of Natural History, 52(29–30), 1909–1925. https://doi.org/10.1080/00222933.2018.1502829

    Article  Google Scholar 

  • Coxen, C. L., Frey, J. K., Carleton, S. A., & Collins, D. P. (2017). Species distribution models for a migratory bird based on citizen science and satellite tracking data. Global Ecology and Conservation, 11, 298e311.

  • Croft, S., Ward, A. I., Aegerter, J. N., & Smith, G. C. (2019). Modeling current and potential distributions of mammal species using presence-only data: A case study on British deer. Ecology and Evolution, 2019, 1–12. https://doi.org/10.1002/ece3.5424

    Article  Google Scholar 

  • D’Elia, J., Haig, S. M., Johnson, M., Marcot, B. G., & Young, R. (2015). Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus). Biological Conservation, 184, 90–99.

    Article  Google Scholar 

  • Di Marco, M., & Santini, L. (2015). Human pressures predict species’ geographic range size better than biological traits. Global Change Biology, 21, 2169–2178.

    Article  Google Scholar 

  • Forister, M. L., McCall, A. C., Sanders, N. J., Fordyce, J. A., Thorne, J. H., O’Brien, J., Waetjen, D. P., & Shapiro, A. M. (2010). Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. PNAS, 107(5), 2088–2092. https://www.pnas.org/cgi/doi/ https://doi.org/10.1073/pnas.0909686107

  • Fourcade, Y., Engler, J. O., Rodder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS One, 9(5), e97122. https://doi.org/10.1371/journal.pone.0097122

    Article  CAS  Google Scholar 

  • Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+aqua land cover type yearly L3 global 500 m SIN Grid V006 . NASA EOSDIS Land Processes DAAC. Retrieved 25 September 2020 from https://doi.org/10.5067/MODIS/MCD12Q1.006

  • Freeman, B., Jimenez-Garcia, D., Barca, B., & Grainger, M. (2019). Using remotely sensed and climate data to predict the current and potential future geographic distribution of a bird at multiple scales: The case of Agelastes meleagrides, a western African forest endemic. Avian Research, 10, 22. https://doi.org/10.1186/s40657-019-0160-y

    Article  Google Scholar 

  • Gallardo, B., Zieritz, A., & Aldridge, D. C. (2015). The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS One, 10(5), e0125801. https://doi.org/10.1371/journal.pone.0125801

    Article  CAS  Google Scholar 

  • Gama, M., Crespo, D., Dolbeth, M., & Anastacio, P. (2015). Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of different environmental datasets. Ecological Modelling, 319, 163–169. https://doi.org/10.1016/j.ecolmodel.2015.06.001

    Article  Google Scholar 

  • Gaul, W., Sadykova, D., White, H. J., León-Sánchez, L., Caplat, P., Emmerson, M. C., & Yearsley, J. M. (2020). Data quantity is more important than its spatial bias for predictive species distribution modelling. Retrieved 10 February 2021 from https://www.researchgate.net/publication/341706726 https://doi.org/10.1101/2020.05.24.113415

  • Genero, F., Franchini, M., Fanin, Y., & Filacorda, S. (2020). Spatial ecology of non-breeding Eurasian Griffon vultures Gyps fulvus in relation to natural and artificial food availability. Bird Study, 67(1), 53–70.

    Article  Google Scholar 

  • Golterman, H. L. (1975). Physiological Limnology: An approach to the physiology of lake ecosystem (Eds.). Developments in Water Science Series. Elsevier Publishing company. https://doi.org/10.1016/s0167-5648(08)71058-X

  • Gschweng, M., Kalko, E. K. V., Berthold, P., Fiedler, W., & Fahr, J. (2012). Multi-temporal distribution modelling with satellite tracking data: predicting responses of a long distance migrant to changing environmental conditions. Journal of Applied Ecology, 49, 803–813.

    Article  Google Scholar 

  • Hameed, S., Din, Ju., Ali, H., Kabir, M., Younas, M., Rehman, E., Bischof, R., & Nawaz, M. A. (2020). Identifying priority landscapes for conservation of snow leopards in Pakistan. PLoS One, 15(11), e0228832. https://doi.org/10.1371/journal.pone.0228832

    Article  CAS  Google Scholar 

  • Henriques, M., Granadeiro, J. P., Monteiro, H., Nuno, A., Lecoq, M., Cardoso, P., Regalla, A., & Catry, P. (2018). Not in wilderness: African vulture strongholds remain in areas with high human density. PLoS One, 13(1), e0190594. https://doi.org/10.1371/journal.pone.0190594

    Article  CAS  Google Scholar 

  • Herrero, J., García-Serrano, A., Couto, S., Ortuño, V., & García-González, R. (2006). Diet of wild boar Sus scrofa L. and crop damage in an intensive agroecosystem. European Journal of Wildlife Research, 52, 245–250.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Holland, A. E., Byrne, M. E., Hepinstall-Cymerman, J., Bryan, A. L., DeVault, T. L., Rhodes, O. E., & Beasley, J. C. (2019). Evidence of niche differentiation for two sympatric vulture species in the Southeastern United States. Movement Ecology, 7, 31. https://doi.org/10.1186/s40462-019-0179-z

    Article  Google Scholar 

  • Holyoak, M., & Heath, S. K. (2016). The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology, 11, 40–59. https://doi.org/10.1111/1749-4877.12167

    Article  Google Scholar 

  • Ilanloo, S.S., Khani, A., Kafash, A., Valizadegan, N., Ashrafi, S., Loercher. F., Ebrahimi, E. & Yousefi, M. (2020). Applying opportunistic observations to model current and future suitability of the Kopet Dagh Mountains for a near threatened avian scavenger. Avian Biology Research, 00(0). Retrieved 10 February 2021 from https://www.researchgate.net/publication/346416388 https://doi.org/10.1177/1758155920962750

  • ISFR. (2017). India State of Forest Report. Forest Survey of India (MoEFCC), Dehradun, India.

  • Ingenloff, K. (2017). Biologically informed ecological niche models for an example pelagic, highly mobile species. European Journal of Ecology, 3(1), 55–75. https://doi.org/10.1515/eje-2017-0006

    Article  Google Scholar 

  • IUCN. (2020). IUCN Redlist. Retrieved 24 December 2020 from https://www.iucnredlist.org/search?query=bearded%20vulture&searchType=species

  • Jackson, J. B. C. (1981). Interspecific competition and species’ distributions: The ghosts of theories and data past. Theoretical Ecology, 21(4), 889–901.

    Google Scholar 

  • Jackson, M. M., Gergel, S. E., & Martin, K. (2015). Citizen science and field survey observations provide comparable results for mapping Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis) distributions. Biological Conservation, 181, 162–172.

    Article  Google Scholar 

  • Jha, K. K. (2015). Distribution of vultures in Uttar Pradesh. India. Journal of Threatened Taxa, 7(1), 6750–6763.

    Article  Google Scholar 

  • Jha, K. K. (2017). Vulture atlas Central India MP. Indian Institute of Forest Management, Bhopal, India.

  • Jha, K. K. (2018). Mapping and management of vultures in an Indian stronghold. In M.O. Campbell, Geomatics and Conservation Biology. (Eds.), 45-75. Nova Science Publishers, New York.

  • Jha, K. K., Campbell, M. O., & Jha, R. (2020). Vultures, their population status and some ecological aspects in an Indian stronghold. Notulae Scientia Biologicae, 12(1), 124–142.

    Article  Google Scholar 

  • Jha, K. K., & Jha, R. (2020). Habitat suitability mapping for migratory and resident vultures: A case of Indian stronghold and species distribution model. Journal of Wildlife and Biodiversity, 4(3), 91–111.

    Google Scholar 

  • Jha, K. K., & Jha, R. (2021). Study of vulture habitat suitability and impact of climate change in Central India using MaxEnt. Journal of Resources and Ecology, 12(1), 30–42. https://doi.org/10.5814/j.issn.1674-764x.2021.01.004

    Article  Google Scholar 

  • Jha, K. K., Jha, R., & Campbell, M. O. (2021). The distribution, nesting habits and status of threatened vulture species in protected areas of Central India. Ecological Questions, 32(2021)2. https://doi.org/10.12775/EQ.2021.020

  • Jiao, S., Zeng, Q., Sun, G., & Lei, G. (2016). Improving conservation of cranes by modeling potential wintering distributions in China. Journal of Resources and Ecology, 7(1), 44–50.

    Article  Google Scholar 

  • Jiménez-García, D., & Peterson, A. T. (2019). Climate change impact on endangered cloud forest tree species in Mexico (Impacto del cambio climático sobre las especies de árboles amenazadas del bosque mesófilo en México). Revista Mexicana de Biodiversidad, 90 (2019), e902781 2. https://doi.org/10.22201/ib.20078706e.2019.90.2781

  • Kale, V. S. (2014). Landscapes and landforms of India. Springer.

    Book  Google Scholar 

  • Kambale, A. A. (2011). A study on breeding behaviour of oriental white backed vulture (Gyps bengalensis) in Anjarle and Deobag, Maharashtra. Wildlife Institute of India, Dehradun.

  • Kupika, O. L., Gandiwa, E., Kativu, S., & Nhamo, G. (2018). Impacts of climate change and climate variability on wildlife resources in Southern Africa: Experience from selected protected areas in Zimbabwe. In B. Sen, & O. Grillo (Eds.), Selected studies in biodiversity. IntechOpen. https://doi.org/10.5772/intechopen.70470

  • Lewison, R., Oro, D., Godley, B., Underhill, L., Bearhop, S., Wilson, R. P., Ainley, D., Arcos, J. M., Boersma, P. D., Borboroglu, P. G., Boulinier, T., Frederiksen, M., Genovart, M., González-Solís, J., Green, J. A., Grémillet, D., Hamer, K. C., Hilton, G. M., Hyrenbach, K. D., & Yorio, P. (2012). Research priorities for seabirds: Improving conservation and management in the 21st century. Endangered Species Research, 17, 93–121.

    Article  Google Scholar 

  • Liberatori, F., & Penteriani, V. (2001). A long-term analysis of the declining population of the Egyptian vulture in the Italian peninsula: Distribution, habitat preference, productivity and conservation implications. Biological Conservation, 101, 381–389.

    Article  Google Scholar 

  • Liminana, R., Soutullo, A., Arroyo, B., & Urios, V. (2012). Protected areas do not fulfil the wintering habitat needs of the trans-Saharan migratory Montagu’s harrier. Biological Conservation, 145, 62–69.

    Article  Google Scholar 

  • Lin, L.-H., Zhu, X.-M., Du, Y., Fang, M.-C., & Ji, X. (2019). Global, regional, and cladistic patterns of variation in climatic niche breadths in terrestrial elapid snakes. Current Zoology, 65(1), 1–9. https://doi.org/10.1093/cz/zoy026

    Article  Google Scholar 

  • Liu, L., Zhao, Z., Zhang, Y., & Wu, X. (2017). Using MaxEnt model to predict suitable habitat changes for key protected species in Koshi Basin, Central Himalayas. Journal of Resources and Ecology, 8(1), 77–87.

    Article  Google Scholar 

  • Markandya, A., Taylor, T., Longo, A., Murty, M. N., Murty, S., & Dhavala, K. (2008). Counting the cost of vulture decline—An appraisal of the human health and other benefits of vultures in India. Ecological Economics, 67, 194–204.

    Article  Google Scholar 

  • Marinković, S. P., Orlandić, L. B., Skorić, S. B., & Karadžić, B. D. (2012). Nest-site preference of griffon vulture (Gyps Fulvus) in Herzegovina. Archives of Biological Science, 64(1), 385–392. https://doi.org/10.2298/ABS1201385M

    Article  Google Scholar 

  • Mateo, R. G., De La Estrella, M., Felicísimo, Á. M., Munoz, J., & Guisan, A. (2013). A new spin on a compositionalist predictive modelling framework for conservation planning: a tropical case study in Ecuador. Biological Conservation, 160, 150–161.

    Article  Google Scholar 

  • McDonald, M. M., Johnson, S. M., Henry, E. R., & Cunneyworth, P. M. K. (2019). Differences between ecological niches in northern and southern populations of Angolan black and white colobus monkeys (Colobus angolensis palliatus and Colobus angolensis sharpei) throughout Kenya and Tanzania. American Journal of Primatology, 2019, e22975. https://doi.org/10.1002/ajp.22975

    Article  Google Scholar 

  • McGrady, M. J., Karelus, D. L., Rayaleh, H. A., Willson, M. S., Meyburg, B.-U., Oli, M. K., & Bildsten, K. (2018). Home ranges and movements of Egyptian Vultures Neophron percnopterus in relation to rubbish dumps in Oman and the Horn of Africa. Bird Study, 65(4), 544–556. https://doi.org/10.1080/00063657.2018.1561648

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058e1069.

  • Milanesi, P., Mori, E., & Menchetti, M. (2020). Observer-oriented approach improves species distribution models from citizen science data. Ecology and Evolution, 00, 1–11. https://doi.org/10.1002/ece3.6832

    Article  Google Scholar 

  • Navaneethan, B., Sankar, K., Qureshi, Q., & Manjrekar, M. (2015). The status of vultures in Bandhavgarh Tiger Reserve, Madhya Pradesh, central India. Journal of Threatened Taxa, 7(14), 8134–8138. https://doi.org/10.11609/jott.2428.7.14.8134-8138

  • Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., Palma, A. D., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., & Purvis, Andy. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520, 45–50.

    Article  CAS  Google Scholar 

  • Ortiz-Urbina, E., Diaz-Balteiro, L., & Iglesias-Merchan, C. (2020). Influence of anthropogenic noise for predicting cinereous vulture nest distribution. Sustainability, 12, 503. https://doi.org/10.3390/su12020503

  • Osborne, P. E., & Seddon, P. J. (2012). Selecting suitable habitats for reintroductions: variation, change and the role of species distribution modelling. In J.G., Ewen, D.P., Armstrong, K.A., Parker, P.J. Seddon, (Eds.). Reintroduction Biology: Interacting Science and Management, 73–104. United Kingdom, Blackwell Publishing Ltd.

  • Pain, D. J., Cunningham, A. A., Donald, P. F., Duckworth, J. W., Houston, D. C., Katzner, T., et al. (2003). Gyps vulture declines in Asia: Temperospatial trends, causes and impacts. Conservation Biology, 17, 661–671.

    Article  Google Scholar 

  • Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distribution models. Biodiversity Informatics, 3, 59–72.

    Article  Google Scholar 

  • Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distribution. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Phillips, S. J., & Elith, J. (2010). POC plots: calibrating species distribution models with presence-only data. Ecology, 91(8), 2476–84. https://doi.org/10.1890/09-0760.1

    Article  Google Scholar 

  • Phipps, W. L., Diekmann, M., MacTavish, L. M., Mendelsohn, J. M., Naidoo, V., Wolter, K., & Yarnell, R. W. (2017). Due South: A first assessment of the potential impacts of climate change on Cape vulture occurrence. Biological Conservation, 210, 16–25. https://doi.org/10.1016/j.biocon.2017.03.028

    Article  Google Scholar 

  • Pires, M. M., Périco, E., Renner, S., & Sahlén, G. (2018). Predicting the effects of future climate change on the distribution of an endemic damselfly (Odonata, Coenagrionidae) in subtropical South American grasslands. Journal of Insect Conservation, 22, 303–319. https://doi.org/10.1007/s10841-018-0063-y

    Article  Google Scholar 

  • Poirazidis, K., Goutner, V., Skartsi, T., & Stamou, G. (2004). Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biological Conservation, 118, 235–248. https://doi.org/10.1016/j.biocon.2003.08.016

    Article  Google Scholar 

  • Prakash, V., Pain, D. J., Cunningham, A. A., Donald, P. F., Prakash, N., Verma, A., Gargi, R., Sivakumar, S., & Rahmani, A. R. (2003). Catastrophic collapse of Indian white-backed Gyps bengalensis and long-billed Gyps indicus vulture populations. Biological Conservation, 109, 381–390.

    Article  Google Scholar 

  • Preston, K. L., Rotenberry, J. T., Redak, R. A., Michael, F., & Allen, M. F. (2008). Habitat shifts of endangered species under altered climate conditions: Importance of biotic interactions. Global Change Biology, 14, 2501–2515. https://doi.org/10.1111/j.1365-2486.2008.01671.x

    Article  Google Scholar 

  • Purohit, A., & Saran, R. (2013). Population status and feeding behavior of Cinereous vulture (Aegypus monachus): Dynamics and implications for the species conservation in and around Jodhpur. World Journal of Zoology, 8(3), 312–318. https://doi.org/10.5829/idosi.wjz.2013.8.3.74148

    Article  Google Scholar 

  • Ramesh, T., Sankar, K., & Qureshi, Q. (2011). Status of vultures in Mudumalai Tiger Reserve, Western Ghats, India. Forktail, 27, 96–97.

    Google Scholar 

  • Ramesh, V., Gopalakrishna, T., Barve, S., & Melnick, D. J. (2017). IUCN greatly underestimates threat levels of endemic birds in the Western Ghats. Biological Conservation, 210, 205–221.

    Article  Google Scholar 

  • Ravindranath, N. H., Joshi, N. V., Sukumar, R., & Saxena, A. (2006). Impact of climate change on forest in India. Current Science, 90(3), 354–361.

    Google Scholar 

  • Roy-Dufresne, E., Saltré, F., Cooke, B. D., Mellin, C., Mutze, G., Cox, T., & Fordham, D. A. (2019). Modeling the distribution of a wide-ranging invasive species using the sampling efforts of expert and citizen scientists. Ecology and Evolution, 9(19), 11053–11063. https://doi.org/10.1002/ece3.5609

    Article  Google Scholar 

  • Santangeli, A., Girardello, M., Buechley, E., Botha, A., Di Minin, E., & Moilanen, A. (2019). Priority areas for conservation of Old World vultures. Conservation Biology, 33(5), 1056–1065. https://doi.org/10.1111/cobi.13282

    Article  Google Scholar 

  • Saenz-Jimenez, F., Rojas-Soto, O., Perez-Torres, J., Martinez-Meyer, E., & Sheppard, J. K. (2020). Effects of climate change and human influence in the distribution and range overlap between two widely distributed avian scavengers. Bird Conservation International (2020), 1-19. Retrieved 11 February 2021 from https://www.researchgate.net/publication/342012019 https://doi.org/10.1017/S0959270920000271

  • Santangeli, A., Spiegel, O., Bridgeford, P., & Girardello, M. (2018). Synergistic effect of land-use and vegetation greenness on vulture nestling body condition in arid ecosystems. Scientific Reports, 8, 13027. https://doi.org/10.1038/s41598-018-31344-2

    Article  CAS  Google Scholar 

  • Saran, R. P., & Purohit, A. (2012). Eco-transformation and electrocution: A major concern for the decline in vulture population in and around Jodhpur. International Journal of Conservation Science, 3(2), 111–118.

    Google Scholar 

  • Şekercioğlu, C. H., Daily, G. C., & Ehrlich, P. R. (2004). Ecosystem consequences of bird declines. Proceedings of National Academy of Science, 101, 18042–18047.

    Article  Google Scholar 

  • Songer, M., Delion, M., Biggs, A. & Huang, Q. (2012). Modeling impacts of climate change on giant panda habitat. International Journal of Ecology, 108752, 12 pages. Retrieved 11 February 2021 from https://www.researchgate.net/publication/235798056 https://doi.org/10.1155/2012/108752

  • Sony, R. K., Sen, S., Kumar, S., Sen, M., & Jayahari, K. M. (2018). Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecological Engineering, 120, 355–363.

    Article  Google Scholar 

  • Straub, M. H., Kelly, T. R., Rideout, B. A., Eng, C., Wynne, J., Braun, J., & Johnson, C. K. (2015). Seroepidemiologic survey of potential pathogens in obligate and facultative scavenging avian species in California. Plos One, 10(11), e0143018. https://doi.org/10.1371/journal.pone.0143018

    Article  CAS  Google Scholar 

  • Sutton, W. B., Barrett, K., Moody, A. T., Loftin, C. S., de Maynadier, P. G., & Nanjappa, P. (2015). Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States. Forests, 6, 1–26. https://doi.org/10.3390/f6010001

    Article  Google Scholar 

  • Teeffelen, A. J. A. V., Vos, C. C., & Opdam, P. (2012). Species in a dynamic world: Consequences of habitat network dynamics on conservation planning. Biological Conservation, 153, 239–253.

    Article  Google Scholar 

  • Trautmann, S. (2018). Climate change impacts on bird species. In D. Tietze (Ed.), Bird Species, Fascinating Life Sciences. Springer Open. https://doi.org/10.1007/978-3-319-91689-7_12

  • Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016a). Data descriptor: Global terrestrial human footprint maps for 1993 and 2009. Scientific Data, 3, 160067. https://doi.org/10.1038/sdata.2016.67

    Article  Google Scholar 

  • Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016b). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7, 12558. https://doi.org/10.1038/ncomms12558

    Article  CAS  Google Scholar 

  • Wu, Q., Wang, L., Zhu, R., Yang, Y. B., Jin, H. Y., & Zou, H. F. (2016). Nesting habitat suitability analysis of red-crowned crane in Zhalong Nature Reserve based on MAXENT modeling. Acta Ecologica Sinica, 36(12), 1–7.

    CAS  Google Scholar 

  • Zeng, Q., Zhang, Y., Sun, G., Duo, H., Wen, L., & Lei, G. (2015). Using species distribution model to estimate the wintering population size of the endangered scaly-sided merganser in China. PLoS One, 10(2), e0117307. https://doi.org/10.1371/journal.pone.0117307

    Article  CAS  Google Scholar 

  • Zhang, J., Jiang, F., Li, G., Qin, W., Li, S., Gao, H., Cai, Z., Lin, G., & Zhang, T. (2019). MaxEnt modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9, 6643–6654. https://doi.org/10.1002/ece3.5243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushalendra Kumar Jha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R., Jha, K.K. Habitat prediction modelling for vulture conservation in Gangetic-Thar-Deccan region of India. Environ Monit Assess 193, 532 (2021). https://doi.org/10.1007/s10661-021-09323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09323-4

Keywords

Navigation