Skip to main content

Advertisement

Log in

Assessment of surface and groundwater quality for irrigation purposes in the Danube-Tisa-Danube hydrosystem area (Serbia)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study evaluates irrigation water quality in the Danube-Tisa-Danube hydrosystem area (Vojvodina, northern Serbia). The area is dominantly a plain with about 75% arable land, suitable for agricultural production and irrigation. Use of water of inadequate quality can have long-term effects on irrigated land and affect the yield of cultivated crops. The analyses included data from 40 surface water and 23 groundwater quality monitoring locations, observed during the period 2013–2018. The average annual values of the concentrations of major cations and anions and of electrical conductivity in surface and groundwater were comparatively analyzed. These values were statistically significantly higher (by p < 0.05) in groundwater bodies with most of the analyzed parameters. Hydrochemical classification of water types shows that 95% of surface and 87% of groundwater locations belong to the Ca·Mg–HCO3 water type. Water suitability for irrigation was assessed using specific parameters and indices (sodium adsorption ratio, Na%, residual sodium carbonate, magnesium hazard, permeability index, and Kelly’s index). The results showed that surface and groundwater resources are generally of good quality and suitable for irrigation, with sporadic deviations at several locations. The principal component analysis (PCA) was used to identify the most important variables affecting the chemical composition of the analyzed waters and group the monitoring locations by their chemical characteristics. The spatial variation of the analyzed water quality indices was shown on thematic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used and analyzed which support the findings of this study are available, open, and free to the public and can be downloaded from the Environmental Protection Agency of the Republic of Serbia website: http://www.sepa.gov.rs/index.php?menu=5000&id=1304&akcija=showDocuments&tema=Vode.

References

  • Abbasnia, A., Radfard, M., Mahvi, A. H., Nabizadeh, R., Yousefi, M., Soleimani, H., & Alimohammadi, M. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data in Brief, 19, 623–631. https://doi.org/10.1016/j.dib.2018.05.061

    Article  Google Scholar 

  • Alexakis, D., Gotsis, D., & Giakoumakis, S. (2012). Assessment of drainage water quality in pre- and post-irrigation seasons for supplemental irrigation use. Environmental Monitoring and Assessment, 184(8), 5051–5063. https://doi.org/10.1007/s10661-011-2321-2

    Article  CAS  Google Scholar 

  • APHA AWWA WEF 3111 B. (1992). Standard methods for the examination of water and wastewater. American Public Health Association.

  • Arslan, H., & Turan, N. A. (2015). Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey. Environmental Monitoring and Assessment, 187, 516. https://doi.org/10.1007/s10661-015-4725-x

    Article  CAS  Google Scholar 

  • ASTM D516-90. (2002). Standard test method for sulfate ion in water. American Society for Testing and Materials.

  • Barbulescu, A., & Barbes, L. (2020). Assessing the water quality of the Danube River (at Chiciu, Romania) by statistical methods. Environmental Earth Sciences, 79, 122. https://doi.org/10.1007/s12665-020-8872-1

    Article  CAS  Google Scholar 

  • Bezdan, J., Bezdan, A., Blagojevic, B., Mesaros, M., Pejic, B., Vranesevic, M., Pavic, D., & Nikolic-Djoric, E. (2019). SPEI-based approach to agricultural drought monitoring in Vojvodina Region. Water, 11(7), 1481. https://doi.org/10.3390/w11071481

    Article  Google Scholar 

  • Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E.-S.E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science, 8, 168. https://doi.org/10.1007/s13201-018-0795-6

    Article  CAS  Google Scholar 

  • Bortolini, L., Maucieri, C., & Borin, M. (2018). A tool for the evaluation of irrigation water quality in the arid and semi-arid regions. Agronomy, 8(2), 23. https://doi.org/10.3390/agronomy8020023

    Article  CAS  Google Scholar 

  • Boutraa, T. (2010). Improvement of water use efficiency in irrigated agriculture: A review. Journal of Agronomy, 9(1), 1–8. https://doi.org/10.3923/ja.2010.1.8

    Article  Google Scholar 

  • Chounlamany, V., Tanchuling, M. A., & Inoue, T. (2017). Spatial and temporal variation of water quality of a segment of Marikina river using multivariate statistical methods. Water Science & Technology, 76(6), 1510–1522. https://doi.org/10.2166/wst.2017.279

    Article  CAS  Google Scholar 

  • Devic, G., Djordjevic, D., & Sakan, S. (2014). Natural and anthropogenic factors affecting the groundwater quality in Serbia. Science of the Total Environment, 468–469, 933–942. https://doi.org/10.1016/j.scitotenv.2013.09.011

    Article  CAS  Google Scholar 

  • Doneen, L. D. (1964). Notes on water quality in agriculture published as a water science and engineering paper 4001: Department of Water Science And Engineering (p. 48). University of California.

    Google Scholar 

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 39, 123–133.

    Article  Google Scholar 

  • European Environment Agency, EEA. (2017). Climate change, impacts and vulnerability in Europe 2016; An indicator-based report. EEA Report No 1/2017. European Environment Agency. https://www.eea.europa.eu/publications/climate-change-impacts-and-vulnerability-2016. Accessed 6 Mar 2020.

  • Food and Agriculture Organization, FAO. (2011). The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan. London. http://www.fao.org/3/a-i1688e.pdf. Accessed 15 Mar 2020.

  • Food and Agriculture Organization, FAO. (2012). Coping with water scarcity - An action framework for agriculture and food security Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/i3015e/i3015e.pdf. Accessed 8 June 2021.

  • Gautam, S. K., Maharana, C., Sharma, D., Singh, A. K., Tripathi, J. K., & Singh, S. K. (2015). Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustainability of Water Quality and Ecology, 6, 57–74. https://doi.org/10.1016/j.swaqe.2015.06.001

    Article  Google Scholar 

  • Gautam, S. K., Tripathi, J. K., Singh, S. K. (2021). Assessing the suitability of Ghaghra River water for irrigation purpose in India. In P.K. Srivastva, M. Gupta, G. Tsakiris, N.W. Quinn (Eds.). Agricultural Water Management (pp. 67–81). Academic Press. https://doi.org/10.1016/B978-0-12-812362-1.00005-9

  • Gharbi, A., Ali, Z. I., & Zairi, M. (2019). Groundwater suitability for drinking and agriculture purposes using irrigation water quality index and multivariate analysis: Case of Sidi Bouzid aquifer, central Tunisia. Environmental Earth Sciences, 78, 692. https://doi.org/10.1007/s12665-019-8733-y

    Article  CAS  Google Scholar 

  • Gidey, A. (2018). Geospatial distribution modeling and determining suitability of groundwater quality for irrigation purpose using geospatial methods and water quality index (WQI) in Northern Ethiopia. Applied Water Science, 8, 82. https://doi.org/10.1007/s13201-018-0722-x

    Article  Google Scholar 

  • Gu, X., Xiao, Y., Yin, S., Pan, X., Niu, Y., Shao, J., Cui, Y., Zhang, Q., & Hao, Q. (2017). Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environmental Monitoring and Assessment, 189(10), 514. https://doi.org/10.1007/s10661-017-6229-3

    Article  CAS  Google Scholar 

  • Heikkinen, P., Korkka-Niemi, K., Lahti, M., & Salonen, V. P. (2002). Groundwater and surface water contamination in the area of the Hitura nickel mine, Western Finland. Environmental Geology, 42, 313–329. https://doi.org/10.1007/s00254-002-0525-z

    Article  CAS  Google Scholar 

  • Ilijevic, K., Grzetic, I., Zivadinovic, I., & Popovic, A. (2012). Long-term seasonal changes of the Danube River eco-chemical status in the region of Serbia. Environmental Monitoring and Assessment, 184(5), 2805–2828. https://doi.org/10.1007/s10661-011-2153-0

    Article  CAS  Google Scholar 

  • ISO 6058. (1984). Water quality - Determination of calcium content - EDTA titrimetric method.

  • ISO 6059. (1984). Water quality - Determination of the sum of calcium and magnesium - EDTA titrimetric method.

  • Islam, A., Rahman, M., Bodrud-Doza, M., Muhib, I., Shammi, M., Zahid, A., Akter, Y., & Kurasaki, M. (2018). A study of groundwater irrigation water quality in south-central Bangladesh: A geo-statistical model approach using GIS and multivariate statistics. Acta Geochimica, 37, 193–214. https://doi.org/10.1007/s11631-017-0201-3

    Article  CAS  Google Scholar 

  • Jasmin, I., & Mallikarjuna, P. (2015). Evaluation of groundwater suitability for irrigation in the Araniar River Basin, South India—A case study using Gis approach. Irrigation and Drainage, 64, 600–608. https://doi.org/10.1002/ird.1930

    Article  Google Scholar 

  • Karakus, C. B., & Yıldız, S. (2019). Evaluation for irrigation water purposes of groundwater quality in the vicinity of Sivas City Centre (Turkey) by using Gis and an irrigation water quality index. Irrigation and Drainage, 69(1), 121–137. https://doi.org/10.1002/ird.2386

    Article  Google Scholar 

  • Kavurmaci, M., & Apaydin, A. (2019). Assessment of irrigation water quality by a Geographic Information System-Multicriteria Decision Analysis based model: A case study from Ankara, Turkey. Water Environment Research, 91, 1420–1432. https://doi.org/10.1002/wer.1133

    Article  CAS  Google Scholar 

  • Kavurmaci, M., & Karakus, C. B. (2020). Evaluation of irrigation water quality by data envelopment analysis and analytic hierarchy process-based water quality indices: The case of Aksaray City, Turkey. Water, Air, & Soil Pollution, 231(2), 55. https://doi.org/10.1007/s11270-020-4427-z

    Article  CAS  Google Scholar 

  • Kazemi, E., Karyab, H., & Emamjome, M. M. (2017). Optimization of interpolation method for nitrate pollution in groundwater and assessing vulnerability with IPNOA and IPNOC method in Qazvin plain. Journal of Environmental Health Science and Engineering, 15, 23. https://doi.org/10.1186/s40201-017-0287-x

    Article  Google Scholar 

  • Kelly, W. P. (1940) Permissible composition and concentration of irrigated waters. In: Proceedings of the A.S.C.F, 607.

  • Khanoranga, & Khalid, S. (2019). An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. Journal of Geochemical Exploration, 197, 14–26. https://doi.org/10.1016/j.gexplo.2018.11.007

    Article  CAS  Google Scholar 

  • Khatri, N., & Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716

    Article  CAS  Google Scholar 

  • Kouadra, R., & Demdoum, A. (2020). Hydrogeochemical characteristics of groundwater and quality assessment for the purposes of drinking and irrigation in Bougaa area, Northeastern Algeria. Acta Geochimica, 39, 642–654. https://doi.org/10.1007/s11631-019-00393-3

    Article  CAS  Google Scholar 

  • Kukrer, S., & Mutlu, E. (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Sarayduzu Dam Lake, Turkey. Environmental Monitoring and Assessment, 191, 71. https://doi.org/10.1007/s10661-019-7197-6

    Article  CAS  Google Scholar 

  • Kumar, S. K., Rammohan, V., Sahayam, J. D., & Jeevanandam, M. (2009). Assessment of groundwater quality and hydrogeochemistry of Manimuktha River basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 159, 341. https://doi.org/10.1007/s10661-008-0633-7

    Article  CAS  Google Scholar 

  • Kurnik, B., Kajfez-Bogataj, L., & Horion, S. (2015). An assessment of actual evapotranspiration and soil water deficit in agricultural regions in Europe. International Journal of Climatology, 35(9), 2451–2471. https://doi.org/10.1002/joc.4154

    Article  Google Scholar 

  • Li, X., Zheng, Q., & Lv, X. (2019). Application of the spline interpolation in simulating the distribution of phytoplankton in a marine NPZD type ecosystem model. International Journal of Environmental Research and Public Health, 16, 2664. https://doi.org/10.3390/ijerph16152664

    Article  CAS  Google Scholar 

  • Lothrop, N., Bright, K. R., Sexton, J., Pearce-Walker, J., Reynolds, K. A., & Verhougstraete, M. P. (2018). Optimal strategies for monitoring irrigation water quality. Agricultural Water Management, 199, 86–92. https://doi.org/10.1016/j.agwat.2017.12.018

    Article  Google Scholar 

  • Majkic-Dursun, B., Oros, I., Oparusic, I., & Petkovic, A. (2019). Assessing groundwater quality for multiuse and geochemical evolution in the South Banat Area of Serbia, Pannonian Basin. Polish Journal of Environmental Studies, 5, 3269–3278. https://doi.org/10.15244/pjoes/94046

  • Malakar, A., Snow, D. D., & Ray, C. (2019). Irrigation water quality—A contemporary perspective. Water, 11(7), 1482. https://doi.org/10.3390/w11071482

    Article  CAS  Google Scholar 

  • Maliqi, E., Jusufi, K., & Singh, S. K. (2020). Assessment and spatial mapping of groundwater quality parameters using metal pollution indices, graphical methods and geoinformatics. Analytical Chemistry Letters, 10(2), 152–180. https://doi.org/10.1080/22297928.2020.1764384

    Article  CAS  Google Scholar 

  • Mandal, U. K., Warrington, D. N., Bhardwaj, A. K., Bar-Tal, A., Kautsky, L., Minz, D., & Levy, G. J. (2008). Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma, 144(1–2), 189–197. https://doi.org/10.1016/j.geoderma.2007.11.014

    Article  CAS  Google Scholar 

  • Meier, J., Zabel, F., & Mauser, W. (2018). A global approach to estimate irrigated areas – a comparison between different data and statistics. Hydrology and Earth System Sciences, 22, 1119–1133. https://doi.org/10.5194/hess-22-1119-2018

    Article  Google Scholar 

  • Milanovic, A., Milijasevic, D., & Brankov, J. (2011). Assessment of polluting effects and surface water quality using water pollution index: A case study of hydro-system Danube-Tisa-Danube, Serbia. Carpathian Journal of Earth and Environmental Sciences, 6(2), 269–277.

    Google Scholar 

  • Minhas, P. S., Qadir, M., & Yadav, R. K. (2019). Groundwater irrigation induced soil sodification and response options. Agricultural Water Management, 215, 74–85. https://doi.org/10.1016/j.agwat.2018.12.030

    Article  Google Scholar 

  • Montesinos, P., Camacho, E., Campos, B., & Rodriguez-Diaz, J. A. (2011). Analysis of Virtual Irrigation Water. Application to Water Resources Management in a Mediterranean River Basin. Water Resources Management, 25, 1635–1651. https://doi.org/10.1007/s11269-010-9765-y

    Article  Google Scholar 

  • Mrazovac, S., & Vojinovic-Miloradov, M. (2011). Correlation of main physicochemical parameters of some groundwater in northern Serbia. Journal of Geochemical Exploration, 108, 176–182. https://doi.org/10.1016/j.gexplo.2011.01.005

    Article  CAS  Google Scholar 

  • Mrazovac, S., Vojinovic-Miloradov, M., Matic, I., & Maric, N. (2013). Multivariate statistical analyzing of chemical parameters of groundwater in Vojvodina. Chemie der Erde – Geochemistry, 73, 217–225. https://doi.org/10.1016/j.chemer.2012.11.002

  • Mrazovac Kurilic, S., Cibulic, V., Presburger Ulnikovic, V., Staletovic, N., & Stamenkovic, L. (2019). Suitability of shallow aquifer groundwater in Vojvodina for irrigation. Water Resources Management, 9(1), 17–21.

    Google Scholar 

  • Ndoye, S., Fontaine, C., Gaye, C. B., & Razack, M. (2018). Groundwater quality and suitability for different uses in the Saloum Area of Senegal. Water, 10(12), 1837. https://doi.org/10.3390/w10121837

    Article  CAS  Google Scholar 

  • Nemcic-Jurec, J., Singh, S. K., Jazbec, A., Gautam, S. K., & Kovac, I. (2019). Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: Two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustainable Water Resources Management, 5(2), 467–490. https://doi.org/10.1007/s40899-017-0200-x

    Article  Google Scholar 

  • Nguyen, B. T., Nguyen, T. M. T., & Bach, Q. (2020). Assessment of groundwater quality based on principal component analysis and pollution source-based examination: A case study in Ho Chi Minh City. Vietnam. Environmental Monitoring and Assessment, 192, 395. https://doi.org/10.1007/s10661-020-08331-0

    Article  CAS  Google Scholar 

  • Noshadi, M., & Ghafourian, A. (2016). Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran). Environmental Monitoring and Assessment, 188, 419. https://doi.org/10.1007/s10661-016-5412-2

    Article  CAS  Google Scholar 

  • Omo-Irabor, O. O., Olobaniyi, S. B., Oduyemi, K., & Akunna, J. (2008). Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Physics and Chemistry of the Earth, 33(8–13), 666–673. https://doi.org/10.1016/j.pce.2008.06.019

    Article  Google Scholar 

  • Ouyang, T., Zhu, Z., & Kuang, Y. (2006). Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China. Environmental Monitoring and Assessment, 120, 313–325. https://doi.org/10.1007/s10661-005-9064-x

    Article  CAS  Google Scholar 

  • Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh. India. Environmental Earth Sciences, 75, 611. https://doi.org/10.1007/s12665-015-5108-x

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A geographic procedure in the geo-chemical interpretation of water analysis. Transaction-American Geophysical Union, 25, 914–928, Washington, DC.

  • RamyaPriya, R., & Elango, L. (2018). Evaluation of geogenic and anthropogenic impacts on spatio-temporal variation in quality of surface water and groundwater along Cauvery River, India. Environmental Earth Sciences, 77, 2. https://doi.org/10.1007/s12665-017-7176-6

    Article  CAS  Google Scholar 

  • Ravikumar, P., Aneesul Mehmood, M., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3, 247–261. https://doi.org/10.1007/s13201-013-0077-2

    Article  CAS  Google Scholar 

  • Rawat, K. S., & Singh, S. K. (2018). Water Quality Indices and GIS-based evaluation of a decadal groundwater quality. Geology, Ecology, and Landscapes, 2(4), 240–255. https://doi.org/10.1080/24749508.2018.1452462

    Article  Google Scholar 

  • Rawat, K. S., Singh, S. K., & Gautam, S. K. (2018). Assessment of groundwater quality for irrigation use: A Peninsular case study. Applied Water Science, 8, 233. https://doi.org/10.1007/s13201-018-0866-8

    Article  CAS  Google Scholar 

  • Rawat, K., Pradhan, S., Tripathi, V., Jeyakumar, L., & Singh, S. K. (2019). Statistical approach to evaluate groundwater contamination for drinking and irrigation suitability. Groundwater for Sustainable Development, 9, 100251. https://doi.org/10.1016/j.gsd.2019.100251

    Article  Google Scholar 

  • Ray, C., McInnes, D., & Sanderson, M. (2018). Virtual water: Its implications on agriculture and trade. Water International, 43(6), 717–730. https://doi.org/10.1080/02508060.2018.1515564

    Article  Google Scholar 

  • Richards, L. A. (1954) Diagnosis and improvement of saline and alkali soils, in Agricultural handbook 60: Washington D.C., United States Department of Agriculture, pp. 160.

  • Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5(3), 158–164. https://doi.org/10.3390/ijerph5030158

    Article  CAS  Google Scholar 

  • Savic, R., Belic, A., & Pantelic, S. (2013). Comparative review of sediment properties from drainage canals. Polish Journal of Environmental Studies, 22(3), 849–859.

    CAS  Google Scholar 

  • Savic, R., Ondrasek, G., Blagojevic, B., Bubalo Kovacic, M., & Zemunac, R. (2018). Spatial distribution and temporal variation of chemical properties of drainage watercourses in rural and peri-urban areas of Novi Sad (Serbia)—A case study. Environmental Monitoring and Assessment, 190, 53. https://doi.org/10.1007/s10661-017-6432-2

    Article  CAS  Google Scholar 

  • Selvakumar, S., Ramkumar, K., Chandrasekar, N., Magesh, N. S., & Kaliraj, S. (2017). Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Applied Water Science, 7, 411–420. https://doi.org/10.1007/s13201-014-0256-9

    Article  Google Scholar 

  • Serbian Environmental Protection Agency (SEPA). (2013-2018). Annual report – Results of surface and groundwater quality testing. Ministry of Environmental Protection, Republic of Serbia, Belgrade. (In Serbian). http://www.sepa.gov.rs. Accessed on 15 Jan 2020.

  • Singh, S., Singh, C., Kumar, K., Gupta, R., & Mukherjee, S. (2009). Spatial-temporal monitoring of groundwater using multivariate statistical techniques in Bareilly district of Uttar Pradesh, India. Journal of Hydrology and Hydromechanics, 57(1), 45–54. https://doi.org/10.2478/v10098-009-0005-1

    Article  CAS  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Pandey, A. C., & Gautam, S. K. (2013). Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water resources management, 27(12), 4291–4313. https://doi.org/10.1007/s11269-013-0408-y

    Article  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Singh, D., Han, D., Gautam, S. K., & Pandey, A. C. (2015). Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: A case study of Allahabad district, India. Environmental geochemistry and health, 37(1), 157–180. https://doi.org/10.1007/s10653-014-9638-z

    Article  CAS  Google Scholar 

  • Singh, S. K., Bharose, R., Nemčić-Jurec, J., Rawat, K. S., & Singh, D. (2021). Irrigation water quality appraisal using statistical methods and WATEQ4F geochemical model. In P.K. Srivastva, M. Gupta, G. Tsakiris, N.W. Quinn (Eds.). Agricultural Water Management, pp. 101-138. Academic Press. https://doi.org/10.1016/B978-0-12-812362-1.00007-2

  • Shahab, A., Shihua, Q., Rashid, A., Ul Hasan, F., & Sohail, M. T. (2016). Evaluation of water quality for drinking and agricultural suitability in the lower Indus plain in Sindh Province, Pakistan. Polish Journal of Environmental Studies, 25(6), 2563–2574. https://doi.org/10.15244/pjoes/63777

  • Singh, G., Patel, N., Jindal, T., Srivastava, P., & Bhowmik, A. (2020). Assessment of spatial and temporal variations in water quality by the application of multivariate statistical methods in the Kali River, Uttar Pradesh, India. Environmental Monitoring and Assessment, 192, 394. https://doi.org/10.1007/s10661-020-08307-0

    Article  CAS  Google Scholar 

  • Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2018). Index based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190, 29. https://doi.org/10.1007/s10661-017-6407-3

    Article  CAS  Google Scholar 

  • Skowron, P., Skowronska, M., Bronowicka-Mielniczuk, U., Filipek, T., Igras, J., Kowalczyk-Jusko, A., & Krzepilko, A. (2018). Anthropogenic sources of potassium in surface water: The case study of the Bystrzyca river catchment, Poland. Agriculture, Ecosystems & Environment, 265, 454–460. https://doi.org/10.1016/j.agee.2018.07.006

    Article  CAS  Google Scholar 

  • Srivastava, P. K., Pandey, P. C., Kumar, P., Raghubanshi, A. S., & Han, D. (2016). Appraisal of surface and groundwater of the Subarnarekha River Basin, Jharkhand, India: Using remote sensing, irrigation indices and statistical technique. In Geospatial Technology for Water Resource Applications, pp. 160–185. CRC Press. https://doi.org/10.1201/9781315370989

  • SRPS ISO 9297. (1997). Water quality - Determination of chloride - Silver nitrate titration with chromate indicator (Mohr’s method), (Adopted from ISO 9297:1989).

  • SRPS EN ISO 9963-1. (2007). Water quality - Determination of alkalinity - Part 1: Determination of total and composite alkalinity (Adopted from ISO 9963-1:1994).

  • Szabolcs, I., & Darab, C. (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th international congress of ISSS, Transaction II, pp. 803–881.

  • Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., Singaraja, C., & Jainab, I. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2(4), 253–269. https://doi.org/10.1007/s13201-012-0045-2

    Article  CAS  Google Scholar 

  • US EPA 120.1. (1982). Method 120.1: Conductance (specific conductance, μmhos25°C) by conductivity meter.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. Washington D.C., United States Department of Agriculture, pp. 19.

  • Xu, P., Feng, W., Qian, H., & Zhang, Q. (2019). Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. International Journal of Environmental Research and Public Health, 16(9), 1492. https://doi.org/10.3390/ijerph16091492

    Article  CAS  Google Scholar 

  • Yang, L., Mei, K., Liu, X., Wu, L., Zhang, M., Xu, J., & Wang, F. (2013). Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environmental Science and Pollution Research, 20, 5341–5352. https://doi.org/10.1007/s11356-013-1536-x

    Article  CAS  Google Scholar 

  • Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems & Environment, 88(2), 137–146. https://doi.org/10.1016/S0167-8809(01)00249-3

    Article  Google Scholar 

  • Zhang, B., Song, X., Zhang, Y., Han, D., Tang, C., Yu, Y., & Ma, Y. (2012). Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Research, 46(8), 2737–2748. https://doi.org/10.1016/j.watres.2012.02.033

    Article  CAS  Google Scholar 

  • Zhang, W., Ma, L., Abuduwaili, J., Ge, Y., Issanova, G., & Saparov, G. (2019). Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environmental Monitoring and Assessment, 191(9), 572. https://doi.org/10.1007/s10661-019-7713-8

    Article  CAS  Google Scholar 

  • Zhang, X., Qian, H., Chen, J., & Qiao, L. (2014). Assessment of groundwater chemistry and status in a heavily used semi-arid region with multivariate statistical analysis. Water, 6(8), 2212–2232. https://doi.org/10.3390/w6082212

    Article  CAS  Google Scholar 

  • Zhang, X., Qian, H., Wu, H., Chen, J., & Qiao, L. (2016). Multivariate analysis of confined groundwater hydrochemistry of a long-exploited sedimentary basin in Northwest China. Journal of Chemistry, 2016(7), 1–15. https://doi.org/10.1155/2016/3812125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rados Zemunac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemunac, R., Savic, R., Blagojevic, B. et al. Assessment of surface and groundwater quality for irrigation purposes in the Danube-Tisa-Danube hydrosystem area (Serbia). Environ Monit Assess 193, 519 (2021). https://doi.org/10.1007/s10661-021-09294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09294-6

Keywords

Navigation