Skip to main content
Log in

Hydrogeochemical and ecological risk assessments of trace elements in the coastal surface water of the southern Caspian Sea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigates the occurrence, distribution, and potential ecological risk of trace elements (TEs) along with the hydrogeochemical characteristics of coastal surface water collected from the southern Caspian coasts in the Mazandaran province of Iran. Eighteen coastal water sites were sampled and analyzed using inductively coupled plasma–mass spectrometry and ion chromatography to determine concentrations of TEs and major ions, respectively. Mean concentrations (µg/l) of TEs in the water followed the order: Al (154.3) > Fe (73.6) > Zn (67.8) > Mn (29.9) > Cu (5.7) > Mo (3.7) > Cd (2.8) > Se (2.3) > V (1.9) > Co = As (1.8) > Sb (1.2) > Pb (0.6). TEs displayed high variations within samples, reflecting many sources that control their concentrations in the coastal water. Most TEs displayed elevated concentrations in the east and west of the study area. The Na-Cl water type in the majority of investigated sites indicates excess alkaline elements and strong acid anions relative to alkaline earth cations and weak acid anions. Considering the saturation states of minerals, carbonate and evaporite minerals are oversaturated and unsaturated in surface water, respectively. Compositional interrelations between aqueous species showed that reverse cation exchange may have occurred. The excess SO42− content, derived from irrigation return flow and domestic greywater, probably plays a crucial role in the mobilization and transport of Zn and Pb by binding to sulfate ligands and forming aqueous complexes. Ecological risk assessment of TEs revealed that water in the majority of sites is safe in terms of As, Se, Pb, and Cd content, and unsuitable with respect to Zn and Cu. Acute and chronic toxicities of Cu and Zn are reported in several sites, thus coastal water cannot be used for fishery and protecting “nature reserve” purposes. However, industrial activity and tourism are safe to be conducted in most coastal water sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Abadi, M., Zamani, A., Parizanganeh, A., Khosravi, Y., & Badiee, H. (2018). Heavy metals and arsenic content in water along the southern Caspian coasts in Iran. Environmental Science and Pollution Research, 25(24), 23725–23735.

    Article  CAS  Google Scholar 

  • Abadi, M., Zamani, A., Parizanganeh, A., Khosravi, Y., & Badiee, H. (2019). Distribution pattern and pollution status by analysis of selected heavy metal amounts in coastal sediments from the southern Caspian Sea. Environmental Monitoring and Assessment, 191(3), 1–16.

    Article  CAS  Google Scholar 

  • Abdi, M. R., Hassanzadeh, S., Kamali, M., & Raji, H. R. (2009). 238U, 232Th, 40K and 137Cs activity concentrations along the southern coast of the Caspian Sea. Iran. Marine Pollution Bulletin, 58(5), 658–662.

    Article  CAS  Google Scholar 

  • Aktar, M. W., Paramasivam, M., Ganguly, M., Purkait, S., & Sengupta, D. (2010). Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: A study for toxicity and ecological impact. Environmental Monitoring and Assessment, 160(1), 207–213.

    Article  CAS  Google Scholar 

  • Alharbi, T., Alfaifi, H., & El-Sorogy, A. (2017). Metal pollution in Al-Khobar seawater, Arabian Gulf. Saudi Arabia. Marine Pollution Bulletin, 119(1), 407–415.

    Article  CAS  Google Scholar 

  • Alizadeh, H., Naderi Beni, A., & Tavakoli, V. (2018). Heavy metals in coastal sediments of South Caspian Sea: Natural or anthropogenic source? Caspian Journal of Environmental Sciences, 16(1), 45–61.

    Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. American Public Health Association.

    Google Scholar 

  • Bai, J. H., Jia, J., Zhang, G. L., Zhao, Q. Q., Lu, Q. Q., Cui, B. S., & Liu, X. H. (2016). Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short-term flooding riparian wetlands in a Chinese delta. Environmental Pollution, 219, 379–388.

    Article  CAS  Google Scholar 

  • Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 64(12), 2877–2884.

    Article  CAS  Google Scholar 

  • Biati, A., & Karbassi, A. R. (2012). Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water. Environmental Monitoring and Assessment, 184(11), 6903–6911.

    Article  CAS  Google Scholar 

  • Bing, H., Wu, Y., Zhou, J., Sun, H., Wang, X., & Zhu, H. (2019). Spatial variation of heavy metal contamination in the riparian sediments after two-year flow regulation in the Three Gorges Reservoir, China. Science of the Total Environment, 649, 1004–1016.

    Article  CAS  Google Scholar 

  • Bohluly, A., Esfahani, F. S., Namin, M. M., & Chegini, F. (2018). Evaluation of wind induced currents modeling along the Southern Caspian Sea. Continental Shelf Research, 153, 50–63.

    Article  Google Scholar 

  • Canfield, D. E., & Farquhar, J. (2009). Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences, 106(20), 8123–8127.

    Article  CAS  Google Scholar 

  • Censi, P. A. O. L. O., Spoto, S. E., Saiano, F. I. L. I. P. P. O., Sprovieri, M., Mazzola, S., Nardone, G., & Ottonello, D. (2006). Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere, 64(7), 1167–1176.

  • de Mora, S. J., & Turner, T. (2004). The Caspian Sea: A microcosm for environmental science and international cooperation. Marine Pollution Bulletin, 48(1–2), 26–29.

    Article  CAS  Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: Fundamentals and applications to contamination (p. 232). Florida, CRC Press.

    Google Scholar 

  • Durov, S. A. (1948). Natural waters and graphic representation of their composition. Doklady Akademii Nauk, 59, 87–90.

    CAS  Google Scholar 

  • Ebrahimi, M., Nematollahi, M. J., Moradian, A., Adineh, S., & Esmaeili, R. (2015). Surface water quality assessment in Gilan Province, Iran. Journal of Biodiversity and Environmental Sciences (JBES), 6(5), 269–280.

    Google Scholar 

  • Eby, G. N. (2016). Principles of environmental geochemistry. Waveland Press.

    Google Scholar 

  • El-Sorogy, A. S., & Attiah, A. (2015). Assessment of metal contamination in coastal sediments, seawaters and bivalves of the Mediterranean Sea coast, Egypt. Marine Pollution Bulletin, 101(2), 867–871.

    Article  CAS  Google Scholar 

  • Evans, R. J., Davies, R. J., & Stewart, S. A. (2007). Internal structure and eruptive history of a kilometre-scale mud volcano system, South Caspian Sea. Basin Research, 19(1), 153–163.

    Article  Google Scholar 

  • Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: NJ: Printice-Hall.

  • Freeze, R. A., & Cherry, J. A. (1979b). Groundwater: Englewood Cliffs (p. 604p). Prentice-Hall.

    Google Scholar 

  • Fu, Z., Guo, W., Dang, Z., Hu, Q., Wu, F., Feng, C., Zhao, X., Meng, W., Xing, B., & Giesy, J. P. (2017). Refocusing on nonpriority toxic metals in the aquatic environment in China. Environmental Science and Technology, 51, 3117–3118. https://doi.org/10.1021/acs.est.7b00223

    Article  CAS  Google Scholar 

  • Fu, Z., Wu, F., Chen, L., Xu, B., Feng, C., Bai, Y., Liao, H., Sun, S., Giesy, J.P., Guo, W. (2016). Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environmental Pollution, 219, 1069–1076. https://doi.org/10.1016/j.envpol.2016.09.007

  • Ghanbarpour, M. R., Goorzadi, M., & Vahabzade, G. (2013). Spatial variability of heavy metals in surficial sediments: Tajan River Watershed, Iran. Sustainability of Water Quality and Ecology, 1, 48–58.

    Article  Google Scholar 

  • Giralt, S., Julia, R., Leroy, S., & Gasse, F. (2003). Cyclic water level oscillations of the KaraBogazGol–Caspian Sea system. Earth and Planetary Science Letters, 212(1–2), 225–239.

    Article  CAS  Google Scholar 

  • He, Z. P., Song, J. M., Zhang, N. X., Xu, Y. Y., Zheng, G. X., & Zhang, P. (2008). Variation characteristics and controlling factors of heavy metals in the South Yellow Sea surface seawaters. Huan jing ke xue= Huanjing kexue29(5), 1153–1162.

  • Hounslow, A. (1995). Water quality data: Analysis and interpretation. CRC Press.

    Google Scholar 

  • Humbatov, F. Y., Ahmadov, M. M., Balayev, V. S., & Suleymanov, B. A. (2015). Trace metals in water samples taken from Azerbaijan sector of Caspian Sea. Journal of Chemistry, 9, 288–295.

    CAS  Google Scholar 

  • Jankowski, J., & Acworth, R. I. (1997). Impact of debris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the Yass River Catchment, New South Wales, Australia. Hydrogeology Journal, 5(4), 71–88.

    Article  Google Scholar 

  • Jayasingam, P., & Sampathkumar, P. (2017). Analysis of heavy metal in Parangipettai and Pondicherry coastal waters, southeast coast of India. International Journal of Scientific Engineering and Science, 1(3), 1–4.

    Google Scholar 

  • Johnston, E. L., & Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157(6), 1745–1752. https://doi.org/10.1016/j.envpol.2009.02.017

    Article  CAS  Google Scholar 

  • Kalantari, M. R., & Ebadi, A. G. (2006). Measurement of some heavy metals in sediments from two great rivers (Tajan and Neka) of Iran. Journal of Applied Sciences, 6(5), 1071–1073.

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Nouri, J., Bidhendi, G. R. N., & Ayaz, G. O. (2008). Behavior of Cu, Zn, Pb, Ni and Mn during mixing of freshwater with the Caspian Sea water. Desalination, 229(1–3), 118–124.

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Tajziehchi, S., & Khoshgalb, H. (2018). Speciation of heavy metals in coastal water of Qeshm Island in the Persian Gulf. Global Journal of Environmental Science and Management, 4(1), 91–98.

    CAS  Google Scholar 

  • Kim, S. J., Rodriguez-Lanetty, M., Suh, J. H., & Song, J. I. (2003). Emergent effects of heavy metal pollution at a population level: Littorina brevicula a study case. Marine Pollution Bulletin, 46(1), 74–80. https://doi.org/10.1016/S0025-326X(02)00319-3

    Article  Google Scholar 

  • Klige, R. K., & Selivanov, A. O. (1995). Budget of sedimentary material in the Caspian Sea and its possible role in water-level changes. WATER RESOUR.; VODNYE RESURSY, 3.

  • Kosloff, L. H. (1985). Tragedy at Kesterson Reservoir: Death of a Wildlife Refuge Illustrates Failings of Water Law. Envtl. L. Rep. News & Analysis, 15, 10386.

    Google Scholar 

  • Kostianoy, A. G., & Kosarev, A. N. (Eds.). (2005). The Caspian sea environment (Vol. 5). Springer Science & Business Media.

  • Lahijani, H., & Tavakoli, V. (2012). Identifying provenance of South Caspian coastal sediments using mineral distribution pattern. Quaternary International, 261, 128–137.

    Article  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Prentice-Hall.

    Google Scholar 

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River. Southeastern Europe. Desalination, 213(1–3), 159–173.

    CAS  Google Scholar 

  • Mirnategh, S. B., Shabanipour, N., & Sattari, M. (2018). Seawater, Sediment and Fish Tissue Heavy Metal Assessment in Southern Coast of Caspian Sea. International Journal of Pharmaceutical Research and Allied Sciences, 7(3), 116–125.

    CAS  Google Scholar 

  • Moore, F., Nematollahi, M. J., & Keshavarzi, B. (2015). Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environmental Monitoring and Assessment, 187(1), 4117.

    Article  CAS  Google Scholar 

  • Naidu, S., Gupta, G., Singh, R., Tahama, K., & Erram, V. C. (2021). Hydrogeochemical Processes Regulating the Groundwater Quality and its Suitability for Drinking and Irrigation Purpose in Parts of Coastal Sindhudurg District, Maharashtra. Journal of the Geological Society of India, 97(2), 173–185.

    Article  CAS  Google Scholar 

  • Naladala, N. R., Singh, R., Katiyar, K. L. D., Bose, P., & Dutta, V. (2018). Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India. Journal of The Institution of Engineers (India): Series A, 99(1), 37–44.

  • Nematollahi, M. J., Ebrahimi, P., Razmara, M., & Ghasemi, A. (2016a). Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environmental Monitoring and Assessment, 188(1), 2. https://doi.org/10.1007/s10661-015-4968-6

    Article  CAS  Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P., & Ebrahimi, M. (2016b). Evaluating hydrogeochemical processes regulating groundwater quality in an unconfined aquifer. Environmental Processes, 3(4), 1021–1043. https://doi.org/10.1007/s40710-016-0192-9

    Article  Google Scholar 

  • Nematollahi, M. J., Keshavarzi, B., Moore, F., Vogt, R.D., Nasrollahzadeh Saravi, H. (2021a). Trace elements in the shoreline and seabed sediments of the southern Caspian Sea: Investigation of contamination level, distribution, ecological- and human health risks, and elemental partition coefficient. Environmental Science and Pollution Research (accepted for publication).

  • Nematollahi, M. J., Dehdaran, S., Moore, F., & Keshavarzi, B. (2021b). Potentially toxic elements and polycyclic aromatic hydrocarbons in street dust of Yazd, a central capital city in Iran: Contamination level, source identification, and ecological–health risk assessment. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00682-4

    Article  Google Scholar 

  • Nematollahi, M. J., Clark, M. J. R., Ebrahimi, P., & Ebrahimi, M. (2018). Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern province of Iran. Environmental Monitoring and Assessment, 190(4), 242. https://doi.org/10.1007/s10661-018-6543-4

    Article  CAS  Google Scholar 

  • Nematollahi, M.J., Moore, F., Keshavarzi, B., Vogt, R.D., Saravi, H.N., and Busquets, R. (2020). Microplastic particles in sediments and waters, south of Caspian Sea: Frequency, distribution, characteristics, and chemical composition. Ecotoxicology and Environmental Safety, 206, p.111137.

  • Ntanganedzeni, B., Elumalai, V., & Rajmohan, N. (2018). Coastal aquifer contamination and geochemical processes evaluation in Tugela catchment, South Africa—geochemical and statistical approaches. Water, 10(6), 687.

    Article  CAS  Google Scholar 

  • Pan, J., Pan, J. F., & Wang, M. (2014). Trace elements distribution and ecological risk assessment of seawater and sediments from Dingzi Bay, Shandong Peninsula. North China. Marine Pollution Bulletin, 89(1–2), 427–434.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey: Earth Science Information Center, Open-File Reports Section.

  • Peng, S. (2015). The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal–spatial variations, sources, pollution statuses, and ecological risks. Marine Pollution Bulletin, 951, 445–451.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168(1–4), 63–90.

    Article  CAS  Google Scholar 

  • Reihlen, A., Ruut, J., Engewald, P., Fammler, H., Moukhametshina, E. (2010). The Russian system of chemicals management. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.

  • Ribeiro, C., Couto, C., Ribeiro, A. R., Maia, A. S., Santos, M., Tiritan, M. E., & Almeida, A. A. (2018). Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Science of the Total Environment, 639, 1381–1393.

    Article  CAS  Google Scholar 

  • Rosado, D., Usero, J., & Morillo, J. (2016). Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva Estuary. Chemosphere, 153, 10–17.

    Article  CAS  Google Scholar 

  • Ruiz-Compean, P., Ellis, J., Curdia, J., Payumo, R., Langner, U., Jones, B., & Carvalho, S. (2017). Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea. Marine Pollution Bulletin, 123(1–2), 205–218.

    Article  CAS  Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  CAS  Google Scholar 

  • Saravi, S. S., Karami, B., Karami, S., & Shokrzadeh, M. (2012). Evaluation of metal pollution in fish and water collected from Gorgan coast of the Caspian Sea. Iran. Bulletin of Environmental Contamination and Toxicology, 89(2), 419–423.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1967). Geochemistry of groundwater: An international guide for research and practice. Unesco. Paris. Chap., 15, 1–18.

    Google Scholar 

  • Selinus, O. (2005). Essentials of Medical Geology. Elsevier: 812 p.

  • Selvam, S., Venkatramanan, S., & Singaraja, C. (2015). A GIS-based assessment of water quality pollution indices for heavy metal contamination in Tuticorin Corporation. Arabian Journal of Geosciences, Tamilnadu. https://doi.org/10.1007/s12517-015-1968-3

    Article  Google Scholar 

  • Sharbaty, S. (2012). 3-D simulation of wind-induced currents using MIKE 3 HS model in the Caspian Sea. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine, 3(3), 45–54.

    Google Scholar 

  • Siegel, F. R. (2004). Environmental Geoehemistry of Potentially Toxie Metals. Springer-Verlag.

    Google Scholar 

  • Singh, R., Venkatesh, A. S., Syed, T. H., Reddy, A. G. S., Kumar, M., & Kurakalva, R. M. (2017). Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba Coalfield, Central India. Environmental Earth Sciences, 76(16), 1–17.

    Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2000). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeology Journal, 9(3), 297–312. https://doi.org/10.1007/s100400000120

    Article  CAS  Google Scholar 

  • Sun, X., Li, B. S., Liu, X. L., & Li, C. X. (2020). Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen bay, China. Journal of Chemistry.

  • Suxia, L. I., Siqi, W. E. I., Junliang, L. I. N., & Daobo, W. A. N. G. (2015). Pollution evaluation of heavy metals in sea water and surface sediments in maowei sea. Journal of Jianghan University (natural Science Edition), 43(5), 471.

    Google Scholar 

  • Tabari, S., Saravi, S. S. S., Bandany, G. A., Dehghan, A., & Shokrzadeh, M. (2010). Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran. Toxicology and Industrial Health, 26(10), 649–656.

    Article  CAS  Google Scholar 

  • Tian, K., Wu, Q., Liu, P., Hu, W., Huang, B., Shi, B., ... & Wang, T. (2020). Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environment international, 136, 105512.

  • Todd, D. K., & Mays, L. W. (2005). Groundwater (hydrology). Wiley.

    Google Scholar 

  • Tueros, I., Rodríguez, J. G., Borja, A., Solaun, O., Valencia, V., & Millán, E. (2008). Dissolved metal background levels in marine waters, for the assessment of the physico-chemical status, within the European Water Framework Directive. Science of the Total Environment, 407(1), 40–52.

    Article  CAS  Google Scholar 

  • Tukura, B. (2015). Heavy metals pollution of water and sediment in Mada River, Nigeria. Journal of Scientific Research & Reports, 6, 157–164.

    Article  Google Scholar 

  • USEPA. (2016). https://www.epa.gov/wqc/national-recommended-waterquality-criteria-aquatic-life-criteria-table

  • Vellemu, E. C., & Omoregie, E. (2014). Lead pollution: A growing concern along the Namibian coastal waters. International Science and Technology Journal of Namibia, 021–034.

  • Voropaev, G. V. (1986). The Caspian Sea: Hydrology and hydrochemistry. Nauka. [In Russian].

    Google Scholar 

  • Wang, J., Liu, R. H., Yu, P., Tang, A. K., Xu, L. Q., & Wang, J. Y. (2012). Study on the pollution characteristics of heavy metals in seawater of Jinzhou Bay. Procedia Environmental Sciences, 13, 1507–1516.

    Article  CAS  Google Scholar 

  • Wang, M., Tong, Y., Chen, C., Liu, X., Lu, Y., Zhang, W., & Lin, Y. (2018). Ecological risk assessment to marine organisms induced by heavy metals in China’s coastal waters. Marine Pollution Bulletin, 126, 349–356.

    Article  CAS  Google Scholar 

  • Wannahari, R., Abdullah, N. A., Nordin, M. F. M., & Muhammad, M. (2013). Evaluation of heavy metal in coastal water at Kelantan. American Journal of Environmental Sciences, 9(6), 505.

    Article  CAS  Google Scholar 

  • Wu, J., Lu, J., Zhang, C., Zhang, Y., Lin, Y., & Xu, J. (2020). Pollution, sources, and risks of heavy metals in coastal waters of China. Human and Ecological Risk Assessment: An International Journal, 26(8), 2011–2026.

    Article  CAS  Google Scholar 

  • Wu, M. L., Zhang, Y. Y., Long, L. J., Zhang, S., Wang, Y. S., Ling, J., & Dong, J. D. (2012). Identification of coastal water quality, including heavy metals, in the South China Sea. Polish Journal of Environmental Studies, 21, 1445–1552.

    CAS  Google Scholar 

  • Zeng, Z., Chen, C. L., Ke, S., Zhao, Z. K., & Xie, Q. (2019). The characteristic and evaluation of heavy metal pollution in seawater and organisms of the Bohe Bay. Ocean Development and Management, 8, 24–28.

    Google Scholar 

  • Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., & Liu, X. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere, 184, 278e288.

  • Zhao, B., Wang, X., Jin, H., Feng, H., Shen, G., Cao, Y., & Zhang, Q. (2018a). Spatiotemporal variation and potential risks of seven heavy metals in seawater, sediment, and seafood in Xiangshan Bay, China (2011–2016). Chemosphere, 212, 1163–1171.

    Article  CAS  Google Scholar 

  • Zhao, Y., Xu, M., Liu, Q., Wang, Z., Zhao, L., & Chen, Y. (2018b). Study of heavy metal pollution, ecological risk and source apportionment in the surface water and sediments of the Jiangsu coastal region, China: A case study of the Sheyang Estuary. Marine Pollution Bulletin, 137, 601–609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Ravi Naidu, director of the Global Centre of Environmental Remediation (GCER) for his support in analyses. Gratitude is extended to the Research Committee and Medical Geology Research Center of Shiraz University, Iran’s National Elites Foundation (INEF), and the Caspian Sea Ecology Research Center (CSERC) for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

MJN: writing—original draft, conceptualization, methodology, formal analysis, investigation, resources. BK: supervision, resources. FM: supervision, resources, reviewing and editing. HNS: resources. MMR: formal analysis, reviewing and editing.

Corresponding author

Correspondence to Behnam Keshavarzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• There are higher concentrations of TEs in the west and east of the study area.

• Sulfate complexes mobilize and transport Zn and Pb to the southern Caspian Sea.

• Reverse cation exchange is an important process that controls coastal water chemistry.

• Zn and Cu pose the highest ecological risk for coastal water of southern Caspian Sea.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, M., Keshavarzi, B., Moore, F. et al. Hydrogeochemical and ecological risk assessments of trace elements in the coastal surface water of the southern Caspian Sea. Environ Monit Assess 193, 452 (2021). https://doi.org/10.1007/s10661-021-09211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09211-x

Keywords

Navigation