Skip to main content

Advertisement

Log in

Mobility, spatial variation and human health risk assessment of mercury in soil from an informal e-waste recycling site, Lagos, Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Spatial variations and mobility of mercury (Hg) and Hg associations with other potentially toxic elements (PTEs) were studied in soil samples from Alaba, the largest e-waste recycling site in Nigeria and West Africa. Total Hg concentration was determined in surface soil samples from various locations using cold vapour atomic absorption spectrometry (CVAAS) following microwave-assisted acid extraction, while sequential extraction was used to determine operationally defined mobility. The concentrations of the PTEs arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) metals were determined using inductively coupled plasma mass spectrometry (ICP-MS) following microwave-assisted digestion with aqua regia. Total Hg concentration ranged from < 0.07 to 624 mg/kg and was largely dependent on the nature and intensity of e-waste recycling activities carried out. Mobile forms of Hg, which may be HgO (a known component of some forms of e-waste), accounted for between 3.2 and 23% of the total Hg concentration, and were observed to decrease with increasing organic matter (OM). Non-mobile forms accounted for >74% of the total Hg content. In the main recycling area, soil concentrations of Cd, Cd, Cu, Hg, Mn, Ni, Pb and Zn were above soil guideline values (Environment Agency in Science Report, 2009; Kamunda et al., 2016). Strong associations were observed between Hg and other PTEs (except for Fe and Zn) with the correlational coefficient ranging from 0.731 with Cr to 0.990 with As in April, but these correlations decreased in June except for Fe. Hazard quotient values > 1 at two locations suggest that Hg may pose health threats to people working at the e-waste recycling site. It is therefore recommended that workers should be investigated for symptoms of Hg exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Supplementary information is provided as online resource.

References

  • Achiba, W. B., Gabteni, N., Lakhdar, A., Du Laing, G., Verloo, M., Jedidi, N., & Gallali, T. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems & Environment, 130, 156–163.

    Article  CAS  Google Scholar 

  • Achiba, W. B., Lakhdar, A., Gabteni, N., Du Laing, G., Verloo, M., Boeckx, P., Van Cleemput, O., Jedidi,  N. & Gallali, T. (2010). Accumulation and fractionation of trace metals in a Tunisian calcareous soil amended with farmyard manure and municipal solid waste compost. Journal of Hazardous Materials, 176, 99–108.

    Article  CAS  Google Scholar 

  • Adediran, Y. A., & Abdulkarim, A. (2012). Challenges of electronic waste management in Nigeria. International Journal of Advances in Engineering & Technology, 4, 640.

    Google Scholar 

  • Adekola, F., & Dosumu, O. (2019). Heavy metal determination in household dusts from Ilorin City, Nigeria. Niseb Journal, 1.

  • Adepitan, J., Falayi, E., & Ogunsanwo, F. (2017). Confirmation of climate change in Southwestern Nigeria through analysis of rainfall and temperature variations over the region. Covenant Journal of Physical and Life Sciences, 5.

  • Alabi, O. A., Adeoluwa, Y. M., & Bakare, A. A. (2020). Elevated serum Pb, Ni, Cd, and Cr levels and DNA damage in exfoliated buccal cells of teenage scavengers at a major electronic waste dumpsite in Lagos, Nigeria. Biological Trace Element Research, 194, 24–33.

    Article  CAS  Google Scholar 

  • Amorim, M. I., Mergler, D., Bahia, M. O., Dubeau, H., Miranda, D., Lebel, J., Burbano, R. R. &  Lucotte, M. (2000). Cytogenetic damage related to low levels of methyl mercury contamination in the Brazilian Amazon. Anais Da Academia Brasileira De Ciências, 72, 497–507.

    Article  CAS  Google Scholar 

  • Bakare, S., Denloye, A., & Olaniyan, F. (2004). Cadmium, lead and mercury in fresh and boiled leafy vegetables grown in Lagos, Nigeria. Environmental Technology, 25, 1367–1370.

    Article  CAS  Google Scholar 

  • Biester, H., Müller, G., & Schöler, H. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Science of the Total Environment, 284, 191–203.

    Article  CAS  Google Scholar 

  • Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., & Holsen, T. M. (2014). Changing climate alters inputs and pathways of mercury deposition to forested ecosystems. Biogeochemistry, 119, 215–228.

    Article  CAS  Google Scholar 

  • BSI. (2005). Determination of pH vol 10390. British Standard International, BS ISO 10390.

  • Buczko, U., & Kuchenbuch, R. O. (2007). Phosphorus indices as risk-assessment tools in the USA and Europe—a review. Journal of Plant Nutrition and Soil Science, 170, 445–460.

    Article  CAS  Google Scholar 

  • Bueno, P. C., Bellido, E., Rubí, J. M., & Ballesta, R. J. (2009). Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environmental Geology, 56(5), 815–824.

    Article  CAS  Google Scholar 

  • Cavoura, O., Davidson, C. M., Keenan, H. E., Reis, A. T., & Pereira, E. (2019). Assessing mercury mobility in sediment of the Union Canal, Scotland, UK by sequential extraction and thermal desorption. Archives of Environmental Contamination and Toxicology, 76, 650–656.

    Article  CAS  Google Scholar 

  • Chen, J., Chen, H., Jin, X., & Chen, H. (2009). Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta, 77, 1381–1387.

    Article  CAS  Google Scholar 

  • Cheremisinoff, N. P. (2016). Pollution Control Handbook for Oil and Gas Engineering. Wiley.

    Book  Google Scholar 

  • Davidson, C. M., Nordon, A., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, Armando C., Diaz-Barrientos, E., Grcman, H., Hodnik, A., Hossack, I., Hursthouse, A. S., Ljung, K., Madrid, F., Otabbong, E. & Rodrigues, S. (2007). Quality and comparability of measurement of potentially toxic elements in urban soils by a group of European laboratories, International Journal of Environmental Analytical Chemistry, 87, 589 –601.

  • DGUV (2016). Exposure to mercury during the manufacture of lamps. Available at https://www.dguv.de/medien/ifa/en/pra/gefahrstoffe/quecksilber/expositionsbeschreibung_herstellung_englisch.pdf

  • EA. (2009). Environment agency soil guideline values for mercury in soil. Science Report SC050021 / Mercury SGV.

  • Fosu-Mensah, B. Y., Addae, E., Yirenya-Tawiah, D., & Nyame, F. (2017). Heavy metals concentration and distribution in soils and vegetation at Korle Lagoon area in Accra, Ghana. Cogent Environmental Science, 3(1), 1405887. https://doi.org/10.1080/23311843.2017.1405887

    Article  CAS  Google Scholar 

  • Graydon, J. A., St Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W., Kelly, C. A., Hall, B. D. & Mowat, L. D. (2008). Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science & Technology, 42, 8345–8351.

    Article  CAS  Google Scholar 

  • Hamidpour, M., Afyuni, M., Khadivi, E., Zorpas, A., & Inglezakis, V. (2012). Composted municipal waste effect on chosen properties of calcareous Soil. International Agrophysics, 26, 365.

    Article  Google Scholar 

  • Han, W., Gao, G., Geng, J., Li, Y., & Wang, Y. (2018). Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere, 197, 325–335.

    Article  CAS  Google Scholar 

  • Han, Y., Kingston, H. M., Boylan, H. M., Rahman, G. M., Shah, S., Richter, R. C., Link, D. D. & Bhandari, S. (2003). Speciation of mercury in soil and sediment by selective solvent and acid extraction. Analytical and Bioanalytical Chemistry, 375, 428–436.

    Article  CAS  Google Scholar 

  • Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W., Scott, K. J. & St Louis, V. L.  (2002). Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environmental Science & Technology, 36, 5034–5040.

    Article  CAS  Google Scholar 

  • Ibrahim, F. B., Adie, D. B., Giwa, A. -R., Abdullahi, S. A., & Okuofu, C. A. (2013). Material flow analysis of electronic wastes (e-Wastes) in Lagos, Nigeria.

  • Isimekhai, K. A. (2017). Environmental risk assessment for an informal e-waste recycling site in Lagos State. Middlesex University.

    Google Scholar 

  • Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631, 1–12.

    Article  CAS  Google Scholar 

  • Jing, Y., He, Z., & Yang, X. (2007). Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere, 69, 1662–1669.

    Article  CAS  Google Scholar 

  • Kamunda, C., Mathuthu, M., & Madhuku, M. (2016). Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. International Journal of Environmental Research and Public Health, 13(7), 663.

    Article  CAS  Google Scholar 

  • Kwaansa-Ansah, E., Voegborlo, R., Adimado, A., Ephraim, J., & Nriagu, J. (2012). Effect of pH, sulphate concentration and total organic carbon on mercury accumulation in sediments in the Volta Lake at Yeji, Ghana. Bulletin of Environmental Contamination and Toxicology, 88, 418–421.

    Article  CAS  Google Scholar 

  • Leopold, K., Foulkes, M., & Worsfold, P. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Analytica Chimica Acta, 663, 127–138.

    Article  CAS  Google Scholar 

  • Li, B. -H. (2011). Rapid speciation analysis of mercury by short column capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry. Analytical Methods, 3, 116–121.

    Article  CAS  Google Scholar 

  • Li, F., Zhang, J., Jiang, W., Liu, C., Zhang, Z., Zhang, C., & Zeng, G. (2017). Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environmental Geochemistry and Health, 39, 923–934.

    Article  CAS  Google Scholar 

  • Li, H., Zhang, Y., Zheng, C., Wu, L., Lv, Y., & Hou, X. (2006a). UV irradiation controlled cold vapor generation using SnCl2 as reductant for mercury speciation. Analytical Sciences, 22, 1361–1365.

    Article  CAS  Google Scholar 

  • Li, J., Duan, H., & Shi, P. (2011). Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis. Waste Management & Research, 29, 727–738.

    Article  CAS  Google Scholar 

  • Li, Y. (2013). Environmental contamination and risk assessment of mercury from a historic mercury mine located in southwestern China. Environmental Geochemistry and Health, 35, 27–36.

    Article  CAS  Google Scholar 

  • Li, Z., Wang, Q., & Luo, Y. (2006b). Exposure of the urban population to mercury in Changchun city, Northeast China. Environmental Geochemistry and Health, 28, 61–66.

    Article  CAS  Google Scholar 

  • Manhart, A., Osibanjo, O., Aderinto, A., & Prakash, S. (2011). Informal e-waste management in Lagos, Nigeria–socio-economic impacts and feasibility of inter-national recycling co-operations. Final Report of Component, 3, 1–129.

    Google Scholar 

  • Mohammad, M. J., & Athamneh, B. M. (2004). Changes in soil fertility and plant uptake of nutrients and heavy metals in response to sewage sludge application to calcareous soils. Journal of Agronomy, 3, 229–236.

    Article  Google Scholar 

  • Ni, W., Chen, Y., Huang, Y., Wang, X., Zhang, G., Luo, J., & Wu, K. (2014). Hair mercury concentrations and associated factors in an electronic waste recycling area, Guiyu, China. Environmental Research, 128, 84–91.

    Article  CAS  Google Scholar 

  • NJDSR. (2004). Release of mercury from broken fluorescent bulbs. State of New Jersey Division of Science Research and Technology.

  • Nnaji, C. C., Mama, C. N., & Ukpabi, O. (2016). Hierarchical analysis of rainfall variability across Nigeria. Theoretical and Applied Climatology, 123, 171–184.

    Article  Google Scholar 

  • Ohajinwa, C. M., van Bodegom, P. M., Vijver, M. G., & Peijnenburg, W. J. (2018). Impact of informal electronic waste recycling on metal concentrations in soils and dusts. Environmental Research, 164, 385–394.

    Article  CAS  Google Scholar 

  • Okorie, I., Akpanta, A., Ohakwe, J., Chikezie, D., Onyemachi, C., & Ugwu, M. (2019). A note on modeling the Maxima of Lagos Rainfall. Annals of Data Science, 6, 341–359.

    Article  Google Scholar 

  • Ozunu, A., Coşara, G. V., Baciu, C., Stezar, I. C., Crişan, A. D., Costan, C. & Modoi, C. (2009). Case studies regarding the remediation of polluted soils from inactive industrial sites. Environmental Engineering & Management Journal 8, 923–930.

  • Passos, C. J., & Mergler, D. (2008). Human mercury exposure and adverse health effects in the Amazon: a review. Cadernos De Saúde Pública, 24, s503–s520.

    Article  Google Scholar 

  • PE. (2006). AAnalyst 200 User’s Guide, PerkinElmer, Inc., 710 Bridgeport Avenue, Connecticut, U.S.A.

  • Pradhan, J. K., & Kumar, S. (2014). Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area Delhi, India. Environmental Science and Pollution Research, 21, 7913–7928.

    Article  CAS  Google Scholar 

  • Reis, A. T., Rodrigues, S. M., Davidson, C. M., Pereira, E., & Duarte, A. C. (2010). Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere, 81, 1369–1377.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Coelho, C.,  Cruz, N., Monteiro, R. J. R.,  Henriques, B., Duarte, A. C.,  Römkens, P. F. A. M. & Pereira, E. (2014). Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas. Science of the Total Environment, 496, 649–661.

  • Sakakibara, M., & Sera, K. (2020). Mercury in soil and forage plants from artisanal and small-scale gold mining in the Bombana Area, Indonesia. Toxics, 8, 15.

    Article  CAS  Google Scholar 

  • Santos-Francés, F., García-Sánchez, A., Alonso-Rojo, P., Contreras, F., & Adams, M. (2011). Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. Journal of Environmental Management, 92, 1268–1276.

    Article  CAS  Google Scholar 

  • Schluep, M., Terekhova, T., Manhart, A., Müller, E., Rochat, D., & Osibanjo, O. (2012). Where are WEEE in Africa? In: Electronics Goes Green, pp. 1–6.

  • Schumacher, B. A. (2002). Methods for the determination of total organic carbon (TOC) in soils and sediments.

  • Soetrisno, F. N., & Delgado-Saborit, J. M. (2020). Chronic exposure to heavy metals from informal e-waste recycling plants and children's attention, executive function and academic performance. Science of the Total Environment, 137099.

  • Srigboh, R. K., Basu, N., Stephens, J., Asampong, E., Perkins, M., Neitzel, R. L., & Fobil, J. (2016). Multiple elemental exposures amongst workers at the Agbogbloshie electronic waste (e-waste) site in Ghana. Chemosphere, 164, 68–74.

    Article  CAS  Google Scholar 

  • USEPA (1997). Mercury Emissions from the Disposal of Fluorescent Lamps - Final Report. Office of Solid Waste. Washington, D.C.

  • USEPA. (2014). Mercury species fractionation and quantification by microwave assisted extraction, selective solvent extraction and/or solid phase extraction, Method 3200, SW-846.

  • WalidBen, A., Noureddine, G., Abdelbasset, L., GijsDu, L., Marc, V., Naceur, J., & Tahar, G. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metal s in a Tunisian calcareous soil Agriculture. Ecosystems & Environment, 130, 156–163.

    Article  CAS  Google Scholar 

  • Wang, J., Liu L., Wang J., Pan B., Fu X., Zhang G., Zhang L., & Lin K. (2015). Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environmental Science and Pollution Research, 22, 1020–1033.

    Article  CAS  Google Scholar 

  • WHO. (1991). Inorganic Mercury vol 118. Environmental health criteria. World Health Organization.

  • Xu, X., Liao, W., Lin, Y., Dai, Y., Shi, Z., & Huo, X. (2018). Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environmental Geochemistry and Health, 40, 1481–1494.

    Article  CAS  Google Scholar 

  • Yang, Y. -K., Zhang, C., Shi, X. -J., Tao, L., & Wang, D. -Y. (2007). Effect of organic matter and pH on mercury release from soils. Journal of Environmental Sciences, 19, 1349–1354.

    Article  CAS  Google Scholar 

  • Zhang, Q., Ye, J., Chen, J., Xu, H., Wang, C., & Zhao, M. (2014). Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environmental Pollution, 185, 258–265.

    Article  CAS  Google Scholar 

  • Zhang, W. H., Ying-Xin, W. & Simonnot, M. (2012). Soil contamination due to e-waste disposal and recycling activities: a review with special focus on China. Pedosphere, 22, 434–455.

    Article  CAS  Google Scholar 

  • Zhao, W., Ding L, Gu X., Luo J., Liu Y., Guo L., Shi Y., Huang T. & Cheng S. (2015). Levels and ecological risk assessment of metals in soils from a typical e-waste recycling region in southeast China. Ecotoxicology, 24, 1947–1960.

    Article  CAS  Google Scholar 

  • Zuo, X., Fu, D., & Li, H. (2013). Variation characteristics of mercury in speciation during road runoff for different rainfall patterns . CLEAN-Soil Air, Water, 41, 69–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.A. wishes to thank the Commonwealth Scholarship Commission for award of a Split-site Scholarship which allowed her to spend part of her Ph.D. at the University of Strathclyde, Glasgow, UK.

Funding

O.A. received a Commonwealth Scholarship Commission for award of a Split-site Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Cavoura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anselm, O.H., Cavoura, O., Davidson, C.M. et al. Mobility, spatial variation and human health risk assessment of mercury in soil from an informal e-waste recycling site, Lagos, Nigeria. Environ Monit Assess 193, 416 (2021). https://doi.org/10.1007/s10661-021-09165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09165-0

Keywords

Navigation