Skip to main content

Advertisement

Log in

Evaluation of quantitative and qualitative sustainability of aquifers by groundwater footprint methodology: case study: West Azerbaijan Province, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In arid and semi-arid areas with limited surface water resources, the daily life and the growth of various economic sectors depend on the provision of services by the groundwater ecosystem. In many countries, groundwater is the main source of freshwater. In addition, groundwater plays an important role within the water cycle, and as such, it feeds and sustains groundwater-dependent ecosystems (such as rivers and wetlands). Therefore, sustainable management of groundwater resources is necessary. Groundwater footprint indicator is a useful tool for assessing the sustainable use of groundwater resources and its associated ecosystem services. In this paper, the sustainable use of groundwater in 28 main alluvial aquifer systems of West Azarbaijan province in the west of Lake Urmia-Northwest of Iran has been investigated by the groundwater footprint indicator. In order to assess the aquifers’ water quality sustainability for agricultural use, the integrated groundwater footprint indicator developed by Kourgialas et al. (2018)—based on GIS spatial analysis—has been used. This assessment can help water sector managers in adopting policies and measures to the sustainable management of the alluvial aquifer system. Due to the availability of sufficient data for all aquifers in 2011, the calculations were performed only for this year. The results showed that no aquifer has a sustainable use of groundwater resources. Also, 16 aquifers do not have qualitative sustainability due to salinity pollution. The results of implementing three applicable policy options to improve the quantitative and qualitative sustainability of aquifers showed that it is possible to change quantitative sustainability all aquifers, but improving qualitative sustainability is possible only in three aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • ASCE, & UNESCO. (1998). Sustainability criteria for water resource systems. Report prepared by the Task Committee on Sustainability Criteria, W.R.P.a.M.D. Reston: ASCE and Working Group Unesco6 IHP IV Project M-4.3.

  • Brundtland, G. H. (1987). Our common future—Call for action. Environmental Conservation, 14(4), 291–294.

    Article  Google Scholar 

  • CGWB, S. (2011). A report on ground water resource and development potential of Sambalpur District, Orissa (Bhubaneswar, India: Central Ground Water Board, South Eastern Region).

  • Chen, X., Wang, P., Muhammad, T., Xu, Z., & Li, Y. (2020). Subsystem-level groundwater footprint assessment in North China Plain-The world’s largest groundwater depression cone. Ecological Indicators, 117, 106662.

    Article  Google Scholar 

  • Custodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277.

    Article  Google Scholar 

  • EARWC (2018), East Azarbaijan Regional Water Center, Provincial Water Resources Status Report (Not published reference- in Persian)

  • Esnault, L., Gleeson, T., Wada, Y., Heinke, J., Gerten, D., Flanary, E., & van Beek, L. P. (2014). Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, US. Water Resources Research, 50(6), 4953–4973.

    Article  Google Scholar 

  • FAO. (2017). AQUASTAT database, http://www.fao.org/nr/water/aquastat/data

  • FAO. (2009). Groundwater Management in Iran, Draft Synthesis Report, FAO, Rome, Italy.

  • Gleeson, T., Wada, Y., Bierkens, M. F., & van Beek, L. P. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197.

    Article  CAS  Google Scholar 

  • Gleeson, T., & Wada, Y. (2013). Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint. Environmental Research Letters, 8(4), 044010.

    Article  Google Scholar 

  • Glynn, P. D., & Plummer, L. N. (2005). Geochemistry and the understanding of groundwater systems. Hydrogeology Journal, 13(1), 263–287.

    Article  CAS  Google Scholar 

  • Hiscock, K. M., Rivett, M. O., & Davison, R. M. (2002). Sustainable groundwater development. Geological Society, London, Special Publications, 193(1), 1–14.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Chapagain, A. K. (2006). Water footprints of nations: water use by people as a function of their consumption pattern. In Integrated assessment of water resources and global change (pp. 35–48). Springer, Dordrecht.

  • Howard, C. D. (2002). Sustainable development—Risk and uncertainty. Journal of Water Resources Planning and Management, 128(5), 309–311.

    Article  Google Scholar 

  • Kourgialas, N. N., & Karatzas, G. P. (2015). Groundwater contamination risk assessment in Crete, Greece, using numerical tools within a GIS framework. Hydrological Sciences Journal, 60(1), 111–132.

    Article  Google Scholar 

  • Kourgialas, N. N., Karatzas, G. P., Dokou, Z., & Kokorogiannis, A. (2018). Groundwater footprint methodology as policy tool for balancing water needs (agriculture & tourism) in water scarce islands-The case of Crete, Greece. Science of the Total Environment, 615, 381–389.

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Sciences, 69(7), 2211-2225.

  • Llamas, M. R., Martinez-Santos, P., & De la Hera, A. (2006). The manifold dimensions of groundwater sustainability: An overview. In International Symposium of Groundwater Sustainability (pp. 23-27).

  • Loucks, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42(4), 513–530.

    Article  Google Scholar 

  • Mays, L. W. (2007). Water resources sustainability. McGraw-Hill.

    Google Scholar 

  • Lovarelli, D., Ingrao, C., Fiala, M., & Bacenetti, J. (2018). Beyond the Water Footprint: A new framework proposal to assess freshwater environmental impact and consumption. Journal of Cleaner Production, 172, 4189–4199.

    Article  CAS  Google Scholar 

  • Margat, J. (2008). Exploitations et utilisations des eaux souterraines dans le monde. Coédition: UNESCO et BRGM, 52p.

  • McMahon, P. B., Plummer, L. N., Böhlke, J. K., Shapiro, S. D., & Hinkle, S. R. (2011). A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeology Journal, 19(4), 779.

    Article  Google Scholar 

  • Molina, J. L., Martos-Rosillo, S., Martín-Montañés, C., & Pierce, S. (2012). The social sustainable aquifer yield: an indicator for the analysis and assessment of the integrated aquifers management. Water Resources Management, 26(10), 2951–2971.

    Article  Google Scholar 

  • Pandey, V. P., Shrestha, S., Chapagain, S. K., & Kazama, F. (2011). A framework for measuring groundwater sustainability. Environmental Science & Policy, 14(4), 396–407.

    Article  Google Scholar 

  • Pérez, A. J., Hurtado-Patiño, J., Herrera, H. M., Carvajal, A. F., Pérez, M. L., Gonzalez-Rojas, E., & Pérez-García, J. (2019). Assessing sub-regional water scarcity using the groundwater footprint. Ecological Indicators, 96, 32–39.

    Article  Google Scholar 

  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., & Noble, A. D. (2014). Economics of salt‐induced land degradation and restoration. In Natural resources forum (Vol. 38, No. 4, pp. 282–295).

  • Richter, B. D., Davis, M. M., Apse, C., & Konrad, C. (2012). A presumptive standard for environmental flow protection. River Research and Applications, 28(8), 1312–1321.

    Article  Google Scholar 

  • Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences, 109(24), 9320–9325.

    Article  CAS  Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880.

    Article  Google Scholar 

  • Smakhtin, V., Revenga, C., & Döll, P. (2004). A pilot global assessment of environmental water requirements and scarcity. Water International, 29(3), 307–317.

    Article  CAS  Google Scholar 

  • US Salinity Laboratory Staff. (1954). Diagnosis and improvement of soils and alkali soils. US Department of Agricultural Hand Book, 60, p. 160.

  • Van Beek, L. P. H., Wada, Y., & Bierkens, M. F. (2011). Global monthly water stress: 1. Water balance and water availability. Water Resources Research47(7).

  • Voudouris, K., Alexopoulos, A., Antonakos, A., & Kallergis, G. (2007). Water resources in the wider area of the Aposelemis basin, Crete island, Greece. Bulletin of the Geological Society of Greece, 40(2), 616–628.

    Article  Google Scholar 

  • Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters37(20).

  • Wada, Y., Van Beek, L. P. H., Viviroli, D., Dürr, H. H., Weingartner, R., & Bierkens, M. F. (2011). Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research47(7).

  • Wada, Y., Van Beek, L. P. H., & Bierkens, M. F. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research48(6).

  • Wackernagel, M., & Rees, W. E. (1997). Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective. Ecological Economics, 20(1), 3–24.

    Article  Google Scholar 

  • West Azarbaijan Regional Water Authority. (2011). Annual report on the state of water resources and consumption, in Persian.

  • Webb, B., Hirata, R., Kruse, E., & Vrba, J. (2006). Sustainability of groundwater resources and its indicators. (Vol. 302). IAHS.

    Google Scholar 

  • Weiskel, P. K., Vogel, R. M., Steeves, P. A., Zarriello, P. J., DeSimone, L. A., & Ries III, K. G. (2007). Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resources Research43(4).

  • Wijnen, M., Augeard, B., Hiller, B., Ward, C., & Huntjens, P. (2012). Managing the invisible: Understanding and improving groundwater governance.

  • Wolock, D. M. (2003). Estimated mean annual natural ground-water recharge in the conterminous United States (No. 2003–311).

  • Zagharmi, M., Ku, K., Ying, L., Shaba, S., & Islam, M. (2015). Urmia Lake: Policy analysis for effective water governance

  • Zektser, I. S., & Lorne, E. (2004). Groundwater resources of the world: and their use. In IHP Series on groundwater (No. 6). UNESCO.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taghi Mahdavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, T. Evaluation of quantitative and qualitative sustainability of aquifers by groundwater footprint methodology: case study: West Azerbaijan Province, Iran. Environ Monit Assess 193, 368 (2021). https://doi.org/10.1007/s10661-021-09142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09142-7

Keywords

Navigation