Skip to main content

Advertisement

Log in

Development of urban air monitoring with high spatial resolution using mobile vehicle sensors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Traditionally, the equipment used to measure air pollution is expensive and placed around cities or in mobile laboratories. It might only represent a certain area and not the entire city due to the locations and limited number of monitoring stations. Nowadays, a mobile sensing is becoming an alternative option to monitor air quality in urban environment due to its ease of use, high flexibility, and low price. This paper develops a vehicular-based mobile monitoring system for real time air quality sensing and visualization across large cities with high spatial resolution. The commercially available low-cost CO, NO\(_2\), NH\(_3\) O\(_3\), CH\(_4\), SO\(_2\), PM\(_\mathrm {x}\), temperature and humidity sensors along with the microcontroller and GPS were integrated in a sensing device installed on the roof of taxi and sport utility vehicle (SUV). The developed device was calibrated through a reference monitoring station and validated through field measurement. We first split the entire city with a uniform grid discretization. We then propose a data processing methodology based on machine learning algorithms for generating 250 representative data set from 286 million data which is collected using the vehicular based mobile sensors. Next we present the representativeness of the data set by comparison of stationary data and mobile data. We also describe the analytical results and spatial distribution with high spatial resolution throughout the city. In addition, the collected mobile sensor data is also used to show that the significant differences and spatial variability in mean levels per street. Finally, we conclude that the proposed mobile monitoring system using high spatial resolution can effectively map the air quality in metropolitan environment and provide detail about the spatial variability that cannot be done with stationary monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are not publicly available due to limited permission from the institute but are available from the corresponding author on reasonable request.

References

  • Abdulrazzaq, L. R., Abdulkareem, M. N., Yazid, M. R. M., Borhan, M. N., & Mahdi, M. S. (2020). Traffic congestion: Shift from private car to public transportation. Civil Engineering Journal, 6(8), 1547–1554. https://doi.org/10.28991/cej-2020-03091566

    Article  Google Scholar 

  • Alvear, O., Zamora, W., Calafate, C., Cano, J. C., & Manzoni, P. (2016). An architecture offering mobile pollution sensing with high spatial resolution. Journal of Sensors. https://doi.org/10.1155/2016/1458147

  • Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., et al. (2017). High-resolution air pollution mapping with google street view cars: exploiting big data. Environmental science & technology, 51(12), 6999–7008. https://doi.org/10.1021/acs.est.7b00891

    Article  CAS  Google Scholar 

  • Aristodemou, E., Boganegra, L. M., Mottet, L., Pavlidis, D., Constantinou, A., Pain, C., et al. (2018). How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environmental Pollution, 233, 782–796. https://doi.org/10.1016/j.envpol.2017.10.041

    Article  CAS  Google Scholar 

  • Beevers, S. D., & Williams, M. L. (2020). Chapter 6 - traffic-related air pollution and exposure assessment. In Traffic-Related Air Pollution, Khreis, H., Nieuwenhuijsen, M., Zietsman, J., & Ramani, T., Eds. Elsevier, pp. 137–162. https://doi.org/10.1016/B978-0-12-818122-5.00006-5

  • Benaissa, F., Bendahmane, I., Bourfis, N., Aoulaiche, O., & Alkama, R. (2019). Bioindication of urban air polycyclic aromatic hydrocarbons using petunia hybrida. https://doi.org/10.28991/cej-2019-03091333

  • Brantley, H., Hagler, G., Kimbrough, E., Williams, R., Mukerjee, S., & Neas, L. (2014). Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmospheric Measurement Techniques, 7(7), 2169–2183. https://doi.org/10.5194/amt-7-2169-2014

    Article  Google Scholar 

  • Cao, H., Liu, J., Wang, G., Yang, G., & Luo, L. (2015). Identification of sand and dust storm source areas in iran. Journal of Arid Land, 7(5), 567–578. https://doi.org/10.1007/s40333-015-0127-8

    Article  Google Scholar 

  • Castellini, S., Moroni, B., Ranalli, M., Lama, G., Eheim, M., Ferrera, R., Trapani, A., & Cappelletti, D. (2013). Real time monitoring of urban particulate matter on a mobile platform. In 4th Imeko TC19 Symposium on Environmental Instrumentation and Measurements, Symposium Proceedings. https://doi.org/10.1016/j.jenvman.2006.11.032

  • Charalampidis, D. (2005). A modified k-means algorithm for circular invariant clustering. IEEE transactions on pattern analysis and machine intelligence, 27(12), 1856–1865. https://doi.org/10.1109/TPAMI.2005.230

    Article  Google Scholar 

  • Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., & Nath, B. (2013). Real-time air quality monitoring through mobile sensing in metropolitan areas. In Proceedings of the 2nd ACM SIGKDD international workshop on urban computing, ACM, p. 15. https://doi.org/10.1145/2505821.2505834

  • Dixon, S. J., & Brereton, R. G. (2009). Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemometrics and Intelligent Laboratory Systems, 95(1), 1–17. https://doi.org/10.1016/j.chemolab.2008.07.010

    Article  CAS  Google Scholar 

  • Duong, T. T., & Lee, B.-K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92(3), 554–562.

    Article  CAS  Google Scholar 

  • Esmaili, O., Tajrishy, M., & Arasteh, P. D. (2006). Evaluation of dust sources in iran through remote sensing and synoptical analysis. In Atlantic Europe conference on remote imaging and spectroscopy, pp. 136–43. https://www.inderscience.com/inorders/

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in luanda, angola: a tropical urban environment. Atmospheric Environment, 39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026

    Article  CAS  Google Scholar 

  • Fruin, S., Urman, R., Lurmann, F., McConnell, R., Gauderman, J., Rappaport, E., et al. (2014). Spatial variation in particulate matter components over a large urban area. Atmospheric environment, 83, 211–219. https://doi.org/10.1016/j.atmosenv.2013.10.063

    Article  CAS  Google Scholar 

  • Gao, T., Su, L., Ma, Q., Li, H., Li, X., & Yu, X. (2003). Climatic analyses on increasing dust storm frequency in the springs of 2000 and 2001 in inner mongolia. International journal of climatology, 23(14), 1743–1755. https://doi.org/10.1002/joc.970

    Article  Google Scholar 

  • Gao, Y., Dong, W., Guo, K., Liu, X., Chen, Y., Liu, X., Bu, J., & Chen, C. (2016). Mosaic: A low-cost mobile sensing system for urban air quality monitoring. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE, pp. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524478

  • Hagler, G. S., Yelverton, T. L., Vedantham, R., Hansen, A. D., & Turner, J. R. (2011). Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol and Air Quality Resarch, 11(5), 539–546. https://doi.org/10.4209/aaqr.2011.05.0055

    Article  CAS  Google Scholar 

  • Hänsel, S., & Matschullat, J. (2012). Changes in the characteristics of dry and wet spells in central eastern germany. Sustainable development and bioclimate, 16https://doi.org/10.3390/atmos11101080

  • Hidy, G. (2018). An historical experiment: Los angeles smog evolution observed by blimp. Journal of the Air & Waste Management Association, 68(7), 643–655. https://doi.org/10.1080/10962247.2018.1433251

    Article  CAS  Google Scholar 

  • Huang, J., Li, F., Zeng, G., Liu, W., Huang, X., Xiao, Z., et al. (2016). Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in xiandao district, changsha city, china. Science of the Total Environment, 541, 969–976. https://doi.org/10.1016/j.scitotenv.2015.09.139

    Article  CAS  Google Scholar 

  • Johnson, K. K., Bergin, M. H., Russell, A. G., & Hagler, G. S. (2018). Field test of several low-cost particulate matter sensors in high and low concentration urban environments. Aerosol Air Qual. Res, 18, 565–578. https://doi.org/10.4209/aaqr.2017.10.0418

    Article  CAS  Google Scholar 

  • KISTI. (2017). Exploration and exploitation of mobile urban sensing data. http://www.kisti.re.kr

  • Kleine Deters, J., Zalakeviciute, R., Gonzalez, M., & Rybarczyk, Y. (2017). Modeling pm2. 5 urban pollution using machine learning and selected meteorological parameters. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2017/5106045

  • Lim, C. C., Kim, H., Vilcassim, M. R., Thurston, G. D., Gordon, T., Chen, L. C., et al. (2019). Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in seoul, south korea. Environment international, 131, 105022. https://doi.org/10.1016/j.envint.2019.105022

    Article  CAS  Google Scholar 

  • Mulenga, D., & Siziya, S. (2019). Indoor air pollution related respiratory ill health, a sequel of biomass use. Scimedicine Journal, 1(1), 30–37. https://doi.org/10.28991/SciMedJ-2019-0101-5

  • Peters, J., Van den Bossche, J., Reggente, M., Van Poppel, M., De Baets, B., & Theunis, J. (2014). Cyclist exposure to ufp and bc on urban routes in antwerp, belgium. Atmospheric Environment, 92, 31–43.

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of tehran. Journal of hazardous materials, 227, 9–17. https://doi.org/10.1016/j.jhazmat.2012.04.047

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.

  • Service, K. S. I. (2017). 2016 dust concentrationshttp://kosis.kr

  • SM, S. N., Yasa, P. R., Narayana, M., Khadirnaikar, S., & Rani, P. (2019). Mobile monitoring of air pollution using low cost sensors to visualize spatio-temporal variation of pollutants at urban hotspots. Sustainable Cities and Society, 44, 520–535. https://doi.org/10.1016/j.scs.2018.10.006

  • Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S., Shelow, D., Hindin, D. A., Kilaru, V. J., & Preuss, P. W. (2013). The changing paradigm of air pollution monitoringhttps://doi.org/10.1021/es4022602

  • Tabachnick, B. G., & Fidell, L. S. (2007). Experimental designs using ANOVA. Thomson/Brooks/Cole.

  • Tessum, M. W., Larson, T., Gould, T. R., Simpson, C. D., Yost, M. G., & Vedal, S. (2018). Mobile and fixed-site measurements to identify spatial distributions of traffic-related pollution sources in los angeles. Environmental science & technology, 52(5), 2844–2853. https://doi.org/10.1021/acs.est.7b04889

    Article  CAS  Google Scholar 

  • Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148–161. https://doi.org/10.1016/j.atmosenv.2015.01.017

    Article  CAS  Google Scholar 

  • Wahba, S., Kamil, B., Nassar, K., & Abdelsalam, A. (2019). Green envelop impact on reducing air temperature and enhancing outdoor thermal comfort in arid climates. Civil Engineering Journal, 5(5), 1124–1135. https://doi.org/10.28991/cej-2019-03091317

    Article  Google Scholar 

  • Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H., & Zeren, Y. (2018). Surface o3 photochemistry over the south china sea: Application of a near-explicit chemical mechanism box model. Environmental Pollution, 234, 155–166. https://doi.org/10.1016/j.envpol.2017.11.001

    Article  CAS  Google Scholar 

  • Yang, B., Bräuning, A., Zhang, Z., Dong, Z., & Esper, J. (2007). Dust storm frequency and its relation to climate changes in northern china during the past 1000 years. Atmospheric Environment, 41(40), 9288–9299. https://doi.org/10.1016/j.envpol.2017.11.001

    Article  CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of xi’an, central china. Science of the total environment, 355(1–3), 176–186. https://doi.org/10.1016/j.atmosenv.2006.01.019

    Article  CAS  Google Scholar 

  • Zalakeviciute, R., López-Villada, J., Rybarczyk, Y., et al. (2018). Contrasted effects of relative humidity and precipitation on urban pm 2.5 pollution in high elevation urban areas. Sustainability, 10(6), 1–21. https://doi.org/10.1016/j.scitotenv.2005.02.026

  • Zwack, L. M., Hanna, S. R., Spengler, J. D., & Levy, J. I. (2011). Using advanced dispersion models and mobile monitoring to characterize spatial patterns of ultrafine particles in an urban area. Atmospheric Environment, 45(28), 4822–4829. https://doi.org/10.1016/j.atmosenv.2011.06.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a 2019 research Grant from Sangmyung University.

Author information

Authors and Affiliations

Authors

Contributions

The author wrote all manuscript text and made all figures.

Corresponding author

Correspondence to Kiwon Yeom.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, K. Development of urban air monitoring with high spatial resolution using mobile vehicle sensors. Environ Monit Assess 193, 375 (2021). https://doi.org/10.1007/s10661-021-09139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09139-2

Keywords

Navigation