Skip to main content
Log in

Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

DPM (diesel particulate matter) is ubiquitously present in the mining environment and is known for mutagenicity and carcinogenicity to humans. However, its health effects in surface coal mines are not well studied, particularly in India. In this study, DPM exposure and corresponding exposure biomarkers were investigated in four different surface coal mines in Central India. To document and evaluate the DPM exposure in surface coal miners, we characterized 1-NP (1-nitropyrene) in the mining environment as surrogate for DPM using Sioutas Cascade Impactor. Exposure biomarkers were analyzed by collecting post work shift (8-h work shift) urine samples and determining the concentrations of 1-aminopyrene (1-AP) as a metabolite of 1-NP and 8-hydroxydeoxyguanosine (8OHdG) as DNA damage marker. We observed high concentration of 1-NP (7.13–52.46 ng/m3) in all the mines compared with the earlier reported values. The average creatinine corrected 1-AP and 8OHdG levels ranged 0.07–0.43 \(\mu\)g/g and 32.47–64.16 \(\mu\)g/g, respectively, in different mines. We found 1-AP in majority of the mine workers’ urine (55.53%) and its level was higher than that reported for general environmental exposure in earlier studies. Thus, the study finding indicates occupational exposure to DPM in all the four mines. However, the association between 1-NP level and exposure biomarkers (1-AP and 8OHdG) was inconsistent, which may be due to individual physiological variations. The data on exposure levels in this study will help to understand the epidemiological risk assessment of DPM in surface coal miners. Further biomonitoring and cohort study are needed to exactly quantify the occupational health impacts caused by DPM among coal miners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in the study and analysis are not publicly available but can be obtained from the corresponding author on legitimate request.

Abbreviations

1-AP:

1-Aminopyrene

1-NP:

1-Nitropyrene

8OHdG:

8-Hydroxydeoxyguanosine

AT:

Averaging time

BMI:

Body mass index

CI:

Confidence interval

DPM:

Diesel particulate matter

EC:

Exposure concentration

ED:

Exposure duration

EF:

Exposure frequency

ELISA:

Enzyme-linked immunosorbent assay

ET:

Exposure time

HPLC:

High performance liquid chromatography

IUR:

Inhalation unit risk

kU/mL:

Kilo enzyme unit per milliliter

ml:

Milliliter

mM:

Millimolar

Nitro-PAH:

Nitrated polycyclic aromatic hydrocarbon

PAH:

Polycyclic aromatic hydrocarbon

USEPA:

United States Environmental Protection Agency

References

  • Bamford, H. A., Bezabeh, D. Z., Schantz, M. M., Wise, S. A., & Baker, J. E. (2003). Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere, 50(5), 575–587. https://doi.org/10.1016/s0045-6535(02)00667-7

    Article  CAS  Google Scholar 

  • Benbrahim-Tallaa, L., Baan, R. A., Grosse, Y., Lauby-Secretan, B., El Ghissassi, B. F., Guha, V., Guha, N., Loomis, D., & Straif, D. (2012). International agency for research on cancer monographs working group. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. The Lancet Oncology, 13, 663–664. https://doi.org/10.1016/s1470-2045(12)70280-2

    Article  Google Scholar 

  • Birch, M. E., & Noll, J. D. (2004). Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines. Journal of Environmental Monitoring, 6(10), 799–806. https://doi.org/10.1039/b407507b

    Article  CAS  Google Scholar 

  • Borillo, G. C., Tadano, Y. S., Godoi, A. F. L., Pauliquevis, T., Sarmiento, H., Rempel, D., Yamamoto, C. I., Marchi, M. R., Potgieter-Vermaak, S., & Godoi, R. H. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Science of the Total Environment, 644, 675–682. https://doi.org/10.1016/j.scitotenv.2018.07.007

    Article  CAS  Google Scholar 

  • Cadet, J., & Wagner, J. R. (2013). DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559. https://doi.org/10.1101/cshperspect.a012559

    Article  CAS  Google Scholar 

  • Chang, P., & Xu, G. (2017). A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines. International Journal of Mining Science and Technology, 27(5), 831–838. https://doi.org/10.1016/j.ijmst.2017.07.020

    Article  Google Scholar 

  • da Silveira Fleck, A., Couture, C., Sauvé, J. F., Njanga, P. E., Neesham-Grenon, E., Lachapelle, G., Coulombe, H., Hallé, S., Aubin, S., Lavoué, J., & Debia, M. (2018). Diesel engine exhaust exposure in underground mines: Comparison between different surrogates of particulate exposure. Journal of Occupational and Environmental Hygiene, 15(7), 549–558. https://doi.org/10.1080/15459624.2018.1459044

    Article  CAS  Google Scholar 

  • De Bont, R., & Van Larebeke, N. (2004). Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, 19(3), 169–185. https://doi.org/10.1093/mutage/geh025

    Article  Google Scholar 

  • Debia, M., Couture, C., Njanga, P. E., Neesham-Grenon, E., Lachapelle, G., Coulombe, H., Hallé, S., & Aubin, S. (2017). Diesel engine exhaust exposures in two underground mines. International Journal of Mining Science and Technology, 27(4), 641–645. https://doi.org/10.1016/j.ijmst.2017.05.011

    Article  CAS  Google Scholar 

  • Du, M., Mullins, B. J., Franklin, P., Musk, A. W., Elliot, N. S., Sodhi-Berry, N., Junaldi, E., de Klerk, N., & Reid, A. (2019). Measurement of urinary 1-aminopyrene and 1-hydroxypyrene as biomarkers of exposure to diesel particulate matter in gold miners. Science of the Total Environment, 685, 723–728. https://doi.org/10.1016/j.scitotenv.2019.06.242

    Article  CAS  Google Scholar 

  • Duan, H., Jia, X., Zhai, Q., Ma, L., Wang, S., Huang, C., Wang, H., Niu, Y., Li, X., Dai, Y., Yu, S., Gao, W., Chen, W., & Zheng, Y. (2016). Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study. Occupational and Environmental Medicine, 73(2), 83–90. https://doi.org/10.1136/oemed-2015-102919

    Article  Google Scholar 

  • El-Bayoumy, K., & O’donnell, M., Hecht, S. S., & Hoffmann, D. (1985). On the analysis of 1-nitronaphthalene, 1-nitropyrene and 6-nitrochrysene in cigarette smoke. Carcinogenesis, 6(4), 505–507. https://doi.org/10.1093/carcin/6.4.505

    Article  CAS  Google Scholar 

  • EPA. U. S. (2009). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment). Washington DC.

  • Foti, J. J., Devadoss, B., Winkler, J. A., Collins, J. J., & Walker, G. C. (2012). Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 336(6079), 315–319. https://doi.org/10.1126/science.1219192

    Article  CAS  Google Scholar 

  • Galaviz, V. E., Quintana, P. J. E., Yost, M. G., Sheppard, L., Paulsen, M. H., Camp, J. E., & Simpson, C. D. (2017). Urinary metabolites of 1-nitropyrene in US–Mexico border residents who frequently cross the San Ysidro Port of Entry. Journal of Exposure Science & Environmental Epidemiology, 27(1), 84–89. https://doi.org/10.1038/jes.2015.78

    Article  CAS  Google Scholar 

  • Garshick, E., Laden, F., Hart, J. E., Davis, M. E., Eisen, E. A., & Smith, T. J. (2012). Lung cancer and elemental carbon exposure in trucking industry workers. Environmental Health Perspectives, 120(9), 1301–1306. https://doi.org/10.1289/ehp.1204989

    Article  Google Scholar 

  • Harrison, R. M., Rob MacKenzie, A., Xu, H., Alam, M. S., Nikolova, I., Zhong, J., Singh, A., Zeraati-Rezaei, S., Stark, C., Beddows, D. C. S., Liang, Z., Xu, R., & Cai, X. (2018). Diesel exhaust nanoparticles and their behaviour in the atmosphere. Proceedings of the Royal Society A, 474(2220), 20180492. https://doi.org/10.1098/rspa.2018.0492

    Article  Google Scholar 

  • Hart, J. E., Garshick, E., Smith, T. J., Davis, M. E., & Laden, F. (2013). Ischaemic heart disease mortality and years of work in trucking industry workers. Occupational and Environmental Medicine, 70(8), 523–528. https://doi.org/10.1136/oemed-2011-100017

    Article  Google Scholar 

  • Huang, C. H., Lin, L. Y., Tsai, M. S., Hsu, C. Y., Chen, H. W., Wang, T. D., Chang, W. T., Cheng, T. J., & Chen, W. J. (2010). Acute cardiac dysfunction after short-term diesel exhaust particles exposure. Toxicology Letters, 192(3), 349–355. https://doi.org/10.1016/j.toxlet.2009.11.008

    Article  CAS  Google Scholar 

  • Huyck, S., Ohman-Strickland, P., Zhang, L., Tong, J., Xu, X. U., & Zhang, J. J. (2010). Determining times to maximum urine excretion of 1-aminopyrene after diesel exhaust exposure. Journal of Exposure Science & Environmental Epidemiology, 20(7), 650–655. https://doi.org/10.1038/jes.2010.29

    Article  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2014). Diesel and gasoline engine exhausts and some nitroarenes. IARC monographs on the evaluation of carcinogenic risks to humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 105, 9.

  • Klaunig, J. E., Kamendulis, L. M., & Hocevar, B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicologic Pathology, 38(1), 96–109. https://doi.org/10.1177/0192623309356453

    Article  CAS  Google Scholar 

  • Knudsen, L. E., Gaskell, M., Martin, E. A., Poole, J., Scheepers, P. T. J., Jensen, A., Autrup, H., & Farmer, P. B. (2005). Genotoxic damage in mine workers exposed to diesel exhaust, and the effects of glutathione transferase genotypes. Mutation Research/genetic Toxicology and Environmental Mutagenesis, 583(2), 120–132. https://doi.org/10.1016/j.mrgentox.2005.03.004

    Article  CAS  Google Scholar 

  • Kumar, S., Joos, G., Boon, L., Tournoy, K., Provoost, S., & Maes, T. (2017). Role of tumor necrosis factor–α and its receptors in diesel exhaust particle-induced pulmonary inflammation. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-11991-7

    Article  CAS  Google Scholar 

  • Laumbach, R., Tong, J., Zhang, L., Ohman-Strickland, P., Stern, A., Fiedler, N., Kipen, H., Kelly-McNeil, K., Lioy, P., & Zhang, J. (2009). Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust. Journal of Environmental Monitoring, 11(1), 153–159. https://doi.org/10.1039/B810039J

    Article  CAS  Google Scholar 

  • Liu, H., Chen, Z., Huo, M., & Jin, C. (2015). Production and application of petroleum oil and its alternatives on internal combustion engines. Journal of Chemistry, 2015, page 1. https://doi.org/10.1155/2015/532580

  • McMillian, M. H., Cui, M., Gautam, M., Keane, M., Ong, T. M., Wallace, W., & Robey, E. (2002). Mutagenic potential of particulate matter from diesel engine operation on Fischer-Tropsch fuel as a function of engine operating conditions and particle size (No. 2002–01–1699). SAE Technical Paper. https://doi.org/10.4271/2002-01-1699

  • Miller-Schulze, J. P., Paulsen, M., Kameda, T., Toriba, A., Hayakawa, K., Cassidy, B., Naeher, L., Villalobos, M. A., & Simpson, C. D. (2016). Nitro-PAH exposures of occupationally-exposed traffic workers and associated urinary 1-nitropyrene metabolite concentrations. Journal of Environmental Sciences (china), 49, 213–221. https://doi.org/10.1016/j.jes.2016.06.007

    Article  CAS  Google Scholar 

  • Miller-Schulze, J. P., Paulsen, M., Kameda, T., Toriba, A., Tang, N., Tamura, K., Dong, L., Zhang, X., Hayakawa, K., Yost, M. G., & Simpson, C. D. (2013). Evaluation of urinary metabolites of 1-nitropyrene as biomarkers for exposure to diesel exhaust in taxi drivers of Shenyang, China. Journal of Exposure Science & Environmental Epidemiology, 23(2), 170–175. https://doi.org/10.1038/jes.2012.40

    Article  CAS  Google Scholar 

  • Möhner, M. (2018). The diesel exhaust in miners study provides no evidence for an increase in risk for lung cancer in miners exposed to diesel engine emissions. European Journal of Epidemiology, 33(12), 1251–1254. https://doi.org/10.1007/s10654-018-0455-z

    Article  Google Scholar 

  • Mukherjee, S., & Pahari, D. P. (2019). Underground and opencast coal mining methods in India: A comparative assessment. Space and Culture, India, 7(1), 39–55. https://doi.org/10.20896/saci.v7i1.395

  • Neophytou, A. M., Hart, J. E., Chang, Y., Zhang, J. J., Smith, T. J., Garshick, E., & Laden, F. (2014). Short-term traffic related exposures and biomarkers of nitro-PAH exposure and oxidative DNA damage. Toxics, 2(3), 377–390. https://doi.org/10.3390/toxics2030377

    Article  CAS  Google Scholar 

  • B Ochirpurev SY Eom A Toriba YD Kim H Kim 2021 Urinary 1-aminopyrene level in Koreans as a biomarker for the amount of exposure to atmospheric 1-nitropyrene Toxicological Research 1–7 https://doi.org/10.1007/s43188-021-00096-z

  • OEHHA. 2009. Air toxics hot spots program 561 technical support document for cancer potencies. Appendix B. Chemical-specific summaries of the information used to derive unit risk and cancer potency values.

  • Øvrevik, J., Refsnes, M., Låg, M., Brinchmann, B. C., Schwarze, P. E., & Holme, J. A. (2017). Triggering mechanisms and inflammatory effects of combustion exhaust particles with implication for carcinogenesis. Basic & Clinical Pharmacology & Toxicology, 121, 55–62. https://doi.org/10.1111/bcpt.12746

    Article  CAS  Google Scholar 

  • Pettit, A. P., Brooks, A., Laumbach, R., Fiedler, N., Wang, Q., Strickland, P. O., Madura, K., Zhang, J., & Kipen, H. M. (2012). Alteration of peripheral blood monocyte gene expression in humans following diesel exhaust inhalation. Inhalation Toxicology, 24(3), 172–181. https://doi.org/10.3109/08958378.2012.654856

    Article  CAS  Google Scholar 

  • Pihlava, T., Uuppo, M., & Niemi, S. (2013). Health effects of exhaust particles. https://www.univaasa.fi/materiaali/pdf/isbn_978-952-476-479-7.pdf

  • Ren, C., Fang, S., Wright, R. O., Suh, H., & Schwartz, J. (2011). Urinary 8-hydroxy-2′-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occupational and Environmental Medicine, 68(8), 562–569. https://doi.org/10.1136/oem.2010.056358

    Article  CAS  Google Scholar 

  • Riley, E. A., Carpenter, E. E., Ramsay, J., Zamzow, E., Pyke, C., Paulsen, M. H., Sheppard, L., Spear, T. M., Seixas, N. S., Stephenson, D. J., & Simpson, C. D. (2018). Evaluation of 1-nitropyrene as a surrogate measure for diesel exhaust. Annals of Work Exposures and Health, 62(3), 339–350. https://doi.org/10.1093/annweh/wxx111

    Article  CAS  Google Scholar 

  • Risom, L., Dybdahl, M., Bornholdt, J., Vogel, U., Wallin, H., Møller, P., & Loft, S. (2003). Oxidative DNA damage and defence gene expression in the mouse lung after short-term exposure to diesel exhaust particles by inhalation. Carcinogenesis, 24(11), 1847–1852. https://doi.org/10.1093/carcin/bgg144

    Article  CAS  Google Scholar 

  • Ristovski, Z. D., Miljevic, B., Surawski, N. C., Morawska, L., Fong, K. M., Goh, F., & Yang, I. A. (2012). Respiratory health effects of diesel particulate matter. Respirology, 17(2), 201–212. https://doi.org/10.1111/j.1440-1843.2011.02109.x

    Article  Google Scholar 

  • Rossner, P., Strapacova, S., Stolcpartova, J., Schmuczerova, J., Milcova, A., Neca, J., Vlkova, V., Brzicova, T., Machala, M., & Topinka, J. (2016). Toxic effects of the major components of diesel exhaust in human alveolar basal epithelial cells (A549). International Journal of Molecular Sciences, 17(9), 1393. https://doi.org/10.3390/ijms17091393

    Article  CAS  Google Scholar 

  • Samek, L., Stegowski, Z., Styszko, K., Furman, L., & Fiedor, J. (2018). Seasonal contribution of assessed sources to submicron and fine particulate matter in a Central European urban area. Environmental Pollution, 241, 406–411. https://doi.org/10.1016/j.envpol.2018.05.082

    Article  CAS  Google Scholar 

  • Sarver, E., Keles, C., & Rezaee, M. (2019). Beyond conventional metrics: comprehensive characterization of respirable coal mine dust. International Journal of Coal Geology, 207, 84–95. https://doi.org/10.1016/j.coal.2019.03.015

    Article  CAS  Google Scholar 

  • Scheepers, P. T. J., Anzion, R., & Bos, R. P. (2001). Gas chromatography-mass spectrometry in occupational and environmental health risk assessment with some applications related to environmental and biological monitoring of 1-nitropyrene. CHROMATOGRAPHIC SCIENCE SERIES, 86, 199–228

    Article  CAS  Google Scholar 

  • Scheepers, P. T. J., Micka, V., Muzyka, V., Anzion, R., Dahmann, D., Poole, J., & Bos, R. P. (2003). Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining. Annals of Occupational Hygiene, 47(5), 379–388. https://doi.org/10.1093/annhyg/meg036

    Article  CAS  Google Scholar 

  • Shi, X. C., Keane, M. J., Ong, T., Li, S. Q., & Bugarski, A. B. (2010). Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments. Journal of Toxicology and Environmental Health, Part A, 73(19), 1314–1324. https://doi.org/10.1080/15287394.2010.485030

    Article  CAS  Google Scholar 

  • Silverman, D. T. (2018). Diesel exhaust and lung cancer—Aftermath of becoming an IARC Group 1 carcinogen. American Journal of Epidemiology, 187(6), 1149–1152. https://doi.org/10.1093/aje/kwy036

    Article  Google Scholar 

  • Singh, R., Sram, R. J., Binkova, B., Kalina, I., Popov, T. A., Georgieva, T., Garte, S., Taioli, E., & Farmer, P. B. (2007). The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. Mutation Research/fundamental and Molecular Mechanisms of Mutagenesis, 620(1–2), 83–92. https://doi.org/10.1016/j.mrfmmm.2007.02.025

    Article  CAS  Google Scholar 

  • Srinivas, U. S., Tan, B. W., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biology, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084

    Article  CAS  Google Scholar 

  • Thier, R., Golka, K., Brüning, T., Ko, Y., & Bolt, H. M. (2002). Genetic susceptibility to environmental toxicants: The interface between human and experimental studies in the development of new toxicological concepts. Toxicology Letters, 127(1–3), 321–327. https://doi.org/10.1016/S0378-4274(01)00515-X

    Article  CAS  Google Scholar 

  • Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26(4), 339–362. https://doi.org/10.1080/10590500802494538

    Article  CAS  Google Scholar 

  • Vermeulen, R., Silverman, D. T., Garshick, E., Vlaanderen, J., Portengen, L., & Steenland, K. (2014). Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environmental Health Perspectives, 122(2), 172–177. https://doi.org/10.1289/ehp.1306880

    Article  Google Scholar 

  • Viteri, F., Pezo, D., Millera, Á., Bilbao, R., & Alzueta, M. U. (2019). Joint quantification of PAH and oxy-PAH from standard reference materials (urban dust and diesel particulate matter) and diesel soot surrogate by GC-MS. International Journal of Environmental Analytical Chemistry, 1-13. https://doi.org/10.1080/03067319.2019.1691177

  • Yosypchuk, O., Barek, J., & Vyskočil, V. (2012). Voltammetric determination of carcinogenic derivatives of pyrene using a boron-doped diamond film electrode. Analytical Letters, 45(5–6), 449–459. https://doi.org/10.1080/00032719.2011.649455

    Article  CAS  Google Scholar 

  • Zhang, L. P., Zhang, X., Duan, H. W., Meng, T., Niu, Y., Huang, C. F., ... & Zheng, Y. X. (2017). Long-term exposure to diesel engine exhaust induced lung function decline in a cross sectional study. Industrial health55(1), 13-26. https://doi.org/10.2486/indhealth.2016-0031

  • Zhang, X., Xiao, X., Duan, H., Gao, F., Li, Y., Niu, Y., Gao, W., Wang, H., Yu, S., & Zheng, Y. (2016). Cytotoxicity of diesel engine exhaust among the Chinese occupational population: A complement of cytokinesis-block micronucleus cytome. Inhalation Toxicology, 28(6), 274–280. https://doi.org/10.3109/08958378.2016.1162233

    Article  CAS  Google Scholar 

  • Zhao, L., Zhang, L., Chen, M., Dong, C., Li, R., & Cai, Z. (2019). Effects of ambient atmospheric PM 2.5, 1-nitropyrene and 9-nitroanthracene on DNA damage and oxidative stress in hearts of rats. Cardiovascular toxicology19(2), 178–190. https://doi.org/10.1007/s12012-018-9488-5

Download references

Acknowledgements

Dinesh Wadikar is grateful to Council of Scientific and Industrial Research (CSIR), Government of India, for the award of Junior Research fellowship (reference number 31/016(0121)/2015-EMR-1). Authors are thankful to CSIR-NEERI, Nagpur, for providing the research facility and infrastructure. The manuscript represents CSIR-NEERI communication number CSIR-NEERI/KRC/2020/JULY/HTC-DRC-CTMD-EISD/1.

Author information

Authors and Affiliations

Authors

Contributions

Selection of locations, PM sampling, biomonitoring: DLW, MOF, SS, KK, AJV, and AM. Estimation of 1-NP: DW, SS, and YP. Estimation of 8OHdG: DW, SS, and AJV. First draft preparation: DW, PN, AB, and SS. Acquisition, interpretation of data, and risk assessment study: DW, SS, KK, and AJV. Aid for Logistics: KK, PN, YP, and AB. Significant revision for essential intellectual material of the article: SS and PN. Administrative and final endorsement of the article: SS and KK.

Corresponding author

Correspondence to Saravanadevi Sivanesan.

Ethics declarations

Ethics approval

All procedures performed including biomonitoring for biomarkers have been carried in compliance with due ethical principles. This study was duly endorsed and approved by the institutional ethics committee of CSIR-NEERI, Nagpur, India in accordance with ICMR (Indian Council of Medical Research) India guidelines vide letter no. Eth.Com./001/EC/EHD/7/2016.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadikar, D.L., Farooqui, M.O., Middey, A. et al. Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India. Environ Monit Assess 193, 342 (2021). https://doi.org/10.1007/s10661-021-09121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09121-y

Keywords

Navigation