Skip to main content

Advertisement

Log in

Biotite as a geoindicator of rare earth element contamination in Gomati River Basin, Ganga Alluvial Plain, northern India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Rare earth elements (REE) are emerging as modern high-technology-related novel micro-contaminants in freshwater aquatic systems and are therefore attracting global attention due to their potential human health risks. The Gomati River (a tributary of the Ganga River) sediments were analyzed for REE concentrations to establish REE contamination and to identify biotite mica mineral as a geoindicator. Chondrite-normalized REE pattern of the river sediments and biotite mica mineral were similar and depict a strong light REE (LREE) enrichment and relatively flatter heavy REE (HREE). The maximum total REE (∑REE) concentration increased from 323 µg/g in 2012 to 673 µg/g in 2019. In the ∑REE, LREE contribution was > 80%, because of anthropogenic inputs, mainly petroleum-cracking catalysts and other high-technology-based products. The XRD analysis and the geochemical signature of the Gomati River sediments reveal the meaningful existence of biotite mica mineral. A distinct downstream REE enrichment pattern was identified in biotite from the mica-rich bedload sediments. The scanning electron microscopy-energy dispersive X-ray (SEM-EDX) mapping images of biotite also revealed the precipitation of Lanthanum, at the weathered edges, during the early stage of mineral weathering. Biotite mica was identified as a geoindicator for the assessment of REE contamination in the Gomati River and the Hindon River Basin of the Ganga Alluvial Plain. Future research is needed for the application of biotite mica mineral as a geoindicator that can help the environmental scientists to contribute more effectively to the interdisciplinary efforts in River Science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

For the Gomati River Basin. The datasets generated and analyzed for the Gomati River Basin during the current study are available from the corresponding author (Priyanka Singh) on reasonable request. All data analysed for the Hindon River Basin during this study are included in this published article (Mondal et al., 2012). Mondal et al. (2012) The geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India. Tectonophysics 566–567: 87–94. https://doi.org/10.1016/j.tecto.2012.07.001.

References

  • Agarwal, R., Kumar, R., & Behari, J. R. (2007). Mercury and lead content in fish species from the River Gomti, Lucknow, India, as biomarkers of contamination. Bulletin of Environmental Contamination and Toxicology, 78, 108–112. https://doi.org/10.1007/s00128-007-9035-8

    Article  CAS  Google Scholar 

  • Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285–1303. https://doi.org/10.1016/jgsf.2018.12.005

    Article  CAS  Google Scholar 

  • Bardoux, G. V. M., & Voicu, D. (1997). Mineralogical norm calculations applied to tropical weathering profiles. Mineralogical Magazine, 61, 185–196. https://doi.org/10.1180/minmag.1997.061.405.03

    Article  Google Scholar 

  • Bau, M., & Koschinsky, A. (2009). Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 4, 37–47. https://doi.org/10.2343/geochemj.1.0005

    Article  Google Scholar 

  • Bayon, G., Toucanne, S., Skonieczny, C., Andre, L., Bermell, S., Cheron, S., & Barrat, J. A. (2015). Rare earth elements and neodymium isotopes in world river sediments revisited. Geochimica et Cosmochimica Acta, 170, 17–38. https://doi.org/10.1016/j.gca.2015.08.001

    Article  CAS  Google Scholar 

  • Berger, A. R. (1997). Assessing rapid environmental change using geoindicators: Environmental Geology, 321(36), 44–330.https://doi.org/10.1007/s002540050191

  • Chang, C., Li, F., Liu, C., Gao, J., Tong, H., & Chen, M. (2016). Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn and Al minerals in soils. Acta Geochimica, 35(4), 329–339. https://doi.org/10.1007/s11631-016-0119-1

    Article  CAS  Google Scholar 

  • CPCB. (2002). A report on state of Environment Lucknow. Central Pollution Control Board, Ministry of Environment and Forests, Government of India, New Delhi. 216pp.

  • Davranche, M., Grybos, M., Gruau, G., Pedrot, M., Dia, A., & Marsac, R. (2011). Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chemical Geology, 284, 127–137. https://doi.org/10.1016/j.chemgeo.2011.02.014

    Article  CAS  Google Scholar 

  • Deer, W. A., Howie, R. A., & Zussman, J. (1966) An introduction to the rock-forming minerals. Longman Group Limited, 528 pp.

  • Dissanayake, C. B., & Chandrajith, R. (1999). Medical geochemistry of tropical environments. Earth Science Reviews, 47, 219–258. https://doi.org/10.1016/S0012-8252(99)00033-1

    Article  CAS  Google Scholar 

  • Dong, H., Peacor, D. R., & Murphy, S. F. (1998). TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile. Geochimica et Cosmochimica Acta, 62, 1881–1887. https://doi.org/10.1016/S0016-7037(98)00096-9

    Article  CAS  Google Scholar 

  • Förstner, U., & Müller, G. (1981). Concentration of heavy metals and polycyclic aromatic hydrocarbons in river sediments: Geochemical background, man’s influence and environmental impact. Geo Journal, 5(5), 299–313. https://doi.org/10.1007/BF02484715

    Article  Google Scholar 

  • Gupta, L. P., & Subramanian, V. (1994). Environmental geochemistry of the Gomati: A tributary of the Ganges River. Environmental Geology, 24, 235–243. https://doi.org/10.1007/BF00767084

    Article  CAS  Google Scholar 

  • Gupta, S. K., Chabukdhara, M., Kumar, P., Singh, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: A biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55. https://doi.org/10.1016/j.ecoenv.2014.08.008

    Article  CAS  Google Scholar 

  • Gromet, L. P., Dymek, R. K., Haskin, L. A., & Korotev, R. L. (1984). The “North American Shale composite”: Its compilation, major and trace element characteristics. Geochemica et Cosmochimica Acta, 48, 2469–2482. https://doi.org/10.1016/0016-7037(84)90298-9

    Article  CAS  Google Scholar 

  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of Total Environment, 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  CAS  Google Scholar 

  • Hochella, M. F., Jr., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral nanoparticles, and Earth systems. Science, 319, 1631–1635. https://doi.org/10.1126/science.1141134

    Article  CAS  Google Scholar 

  • Jigyasu, D. K., Kuvar, R., Shahina, S., Singh, P., Singh, I. B., & Singh, M. (2014). Chemical weathering of biotite in the Ganga Alluvial Plain. Current Science, 106, 1484–1486.

    CAS  Google Scholar 

  • Jigyasu, D. K., Singh, M., Singh, S., & Singh, S. (2020). Trace element mobility, regional significance and global implication of Gomati river basin, northern India. SN Applied Sciences, 2, 1456. https://doi.org/10.1007/s42452-020-03294-0

    Article  CAS  Google Scholar 

  • Kulaksiz, S., & Bau, M. (2011). Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environmental International, 37, 973–979. https://doi.org/10.1016/j.envint.2011.02.018

    Article  CAS  Google Scholar 

  • Kumar, S., & Singh, I. B. (1978). Sedimentological study of Gomati River sediments, Uttar Pradesh, India. Example of a river in alluvial plain. Senckenbergianamarit, 10, 145–211

    Google Scholar 

  • Langmuir, D. (1997). Aqueous Environmental Geochemistry. Prentice-Hall, 590 pp.

  • Liu, G., Xiao, H., Liu, P., Zhang, Q., & Zhang, J. (2016). An improved method for tracing soil erosion using rare earth elements. Journal of Soils Sediments, 16, 1670–1679. https://doi.org/10.1007/s11368-016-1356-y

    Article  CAS  Google Scholar 

  • Lohani, M. B., Singh, A., Rupainwar, D. C., & Dhar, D. N. (2008). Seasonal variations of heavy metal contamination in river Gomti of Lucknow city region. Environmental Monitoring and Assessment, 147, 253–263. https://doi.org/10.1007/s10661-007-0117-1

    Article  CAS  Google Scholar 

  • Mondal, M. E. A., Wani, H., & Mondal, B. (2012). The geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India. Tectonophysics, 566–567, 87–94. https://doi.org/10.1016/j.tecto.2012.07.001

    Article  CAS  Google Scholar 

  • Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins - Veranderungenseit 1971. Umschau, 79(24), 778–783

    Google Scholar 

  • Murakami, T., Utsunomiya, S., Yokoyama, T., & Kasama, T. (2003). Biotite dissolution processes and mechanisms in laboratory and in nature: Early stage weathering environment and vermiculization. American Mineralogist, 88, 377–386

    Article  CAS  Google Scholar 

  • Owens, P. N., Batalla, R. J., Collins, A. J., Gomez, B., Hicks, D. M., Horowitz, A. J., Kondolf, G. M., Marden, M., Page, M. J., Peacock, D. H., Petticrew, E. L., Salomons, W., & Trustrum, N. A. (2005). Fine-grained sediment in river system: environmental significance and management issues. River Research and Applications, 21, 693–717. https://doi.org/10.1002/rra.878

    Article  Google Scholar 

  • Pal, D. K., Bhattacharya, T., Sinha, R., Srivastava, P., Das gupta, A. S., Chandran, P., Ray, S. K., & Nimje, A. (2012). Clay minerals record from late quaternary drill core of the Ganga Plains and their implications for provenance and climate change in the Himalayan Foreland. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 27–37. https://doi.org/10.1016/j.palaeo.2011.05.009

    Article  Google Scholar 

  • Rao, K. L. (1975). India’s Water Wealth. Oxford University Press, London, 267 pp.

  • Rollinson, H. R. (1993). Using Geochemical Data: Evaluation Presentation. Interpretation.

    Google Scholar 

  • Ronov, A. B. (1983). The Earth’s Sedimentary Shell Quantitative Patterns of its Structure, Composition and Evolution, by A. B., AC1 Reprint Series 80.

  • Singh, G., Vajpayee, M., Ram, S., & Shanker, R. (2010b). Environmental reservoirs for enterotoxigenic Escherichia coli in South Asian Gangetic riverine system. Environmental Science & Technology, 44, 6475–6480. https://doi.org/10.1021/es1004208.

    Article  CAS  Google Scholar 

  • Singh, I. B. (1996). Geological evolution of Ganga Plain- An overview. The Palaeontological Society of India, 41, 99–137

    Google Scholar 

  • Singh, I. B., Srivastava, P., Sharma, S., Sharma, M., Singh, D. S., Rajgopalan, G., & Shukla, U. K. (1999). Upland interfluve (Doab) deposition: alternative model to muddy overbank deposits. Facies, 40, 197‒210. https://doi.org/10.1007/BF02537474

  • Singh, M., Ansari, A. A., Müller, G., & Singh, I. B. (1997). Heavy Metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Environmental Geology, 29(3/4), 246–252

    Article  CAS  Google Scholar 

  • Singh, M., Goel, P., & Singh, A. K. (2005a). Biomonitoring of lead in atmospheric environment of an urban center of the Ganga Plain, India. Environmental Monitoring and Assessment, 107, 101–114. https://doi.org/10.1007/s10661-005-2146-y

    Article  CAS  Google Scholar 

  • Singh, M., Kumar, S., Kumar, B., Singh, S., & Singh. I. B. (2013). Investigation on the hydrodynamics if Ganga Alluvial Plain using environmental isotopes: a case study of the Gomati River Basin, northern India. Hydrogeology Journal, 21, 687‒700. https://doi.org/10.1007/s10040-013-0958-3

  • Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water, Air, and Soil Pollution, 141, 35–54. https://doi.org/10.1023/A:1021339917643

    Article  CAS  Google Scholar 

  • Singh, M., Sharma, M., & Tobschall, H. J. (2005b). Weathering of the Ganga alluvial plain, northern India: Implications from fluvial geochemistry of the Gomati River. Applied Geochemistry, 20, 1–21. https://doi.org/10.1016/j.apgeochem.2004.07.005

    Article  CAS  Google Scholar 

  • Singh, M., Singh, A. K., Swati, S., & N., Singh, S., Chowdhary, A. K. (2010a). Arsenic mobility in fluvial environment of the Ganga Plain, northern India. Environmental Earth Science, 59, 1703–1715. https://doi.org/10.1007/s12665-009-0152-z

    Article  CAS  Google Scholar 

  • Singh, P. (2017). Sr Isotope, Major and Trace elemental mobility of Central Ganga Alluvial Plain. Unpublished Thesis, Indian Institute of Technology Roorkee, India.

  • Singh, V. K., Singh, K. P., & Mohan, D. (2005c). Status of Heavy metals water and bed sediment of River Gomti-A tributary of the Ganga River, India. Environmental Monitoring and Assessment, 105, 43–67. https://doi.org/10.1007/s10661-005-2816-9

    Article  CAS  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publication 42, 313‒345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

  • Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yasu, Y., & Shimizu, H. (2002). W- and M- type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposits, central Japan. Chemical Geology., 184, 311–335. https://doi.org/10.1016/S0009-2541(01)00388-6

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. (1988). The significance of the rare earth in geochemistry and cosmochemistry. In: Handbook on the Physics and Chemistry of Rare Earths, (Hufner, S., & Eyring, L., eds.), 11: 485–578.

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. (p. 312). Blackwell Publication.

    Google Scholar 

  • Thakur, A., Singh, M., & Singh, I. B. (2009). Fluvial incision of the Gomati River in the Ganga Plain, India: Its implications. Himalayan Geology., 30(2), 43–50

    Google Scholar 

  • UNESCO. (1995). A global geochemical database for environmental and resource management. Earth Science 19, UNESCO Publication, Paris.

  • Yadav, J. K. (2020). Rare earth element geochemistry of Lower Gomati River Basin: Implication to weathering processes of Ganga alluvial plain, Northern India. Unpublished Thesis, University of Lucknow, India.

  • Zhaoliang, S., Congqiang, L., Guilin, H., Zhongliang, W., Zhaozhou, Z., & Cheng, Y. (2006). Enrichment and release of rare earth elements during weathering of sedimentary rocks in Wujiang catchments, South China. Journal Rare Earths, 24, 491–496. https://doi.org/10.1016/S1002-0721(06)60149-X

    Article  Google Scholar 

  • Zhu, W., Kennedy, M., de Leer, E. W. B., Zhou, H., & Alaerts, G. J. F. R. (1997). Distribution and modelling of rare earth elements in Chinese river sediments. Science of Total Environment., 204, 233–234. https://doi.org/10.1016/S0048-9697(97)00172-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IBS is thankful to Indian National Science Academy (New Delhi) for the award of INSA Honorary Scientist. Subodh Kumar is thankfully acknowledged for his help during SEM-EDX analysis. Authors express thanks to Prof. S. Sensarma (University of Lucknow) for fruitful discussions and to Dr. Ratan Kar (Birbal Sahni Institute of Palaeosciences) for his support in improving the English language, during the revision of the manuscript. Authors thank the two anonymous reviewers for their critical comments, which greatly improved the presentation of the work.

Funding

This work was funded as the MHRD research fellowship to PS from the Ministry of Human Resource Development, Government of India, at the Indian Institute of Technology Roorkee (grant no. MHR-02-41-106-429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Yadav, J.K., Jigyasu, D.K. et al. Biotite as a geoindicator of rare earth element contamination in Gomati River Basin, Ganga Alluvial Plain, northern India. Environ Monit Assess 193, 361 (2021). https://doi.org/10.1007/s10661-021-09105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09105-y

Keywords

Navigation