Babushkina, E. A., & Belokopytova, L. V. (2014). Climatic signal in radial increment of conifers in forest-steppe of southern Siberia and its dependence on local growing conditions. Russian Journal of Ecology, 45, 325–332. https://doi.org/10.1134/S1067413614050038
Article
Google Scholar
Batima, P., Natsagdorj, L., Gombluudev, P., & Erdenetsetseg, B. (2005). Observed climate change in Mongolia. AIACC Working Papers, 12, 1–25.
Beck, P. S. A., Juday, G. P., Alix, C., Barber, V. A., Winslow, S. E., Sousa, E. E., et al. (2011). Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters, 14, 373–379. https://doi.org/10.1111/j.1461-0248.2011.01598.x
Article
Google Scholar
Brehaut, L., & Danby, R. K. (2018). Inconsistent relationships between annual tree ring-widths and satellite-measured NDVI in a mountainous subarctic environment. Ecological Indicators, 91, 698–711. https://doi.org/10.1016/j.ecolind.2018.04.052
Article
Google Scholar
Buermann, W., Parida, B., Jung, M., MacDonald, G. M., Tucker, C. J., & Reichstein, M. (2014). Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophysical Research Letters, 41, 1995–2002. https://doi.org/10.1002/2014GL059450
Article
Google Scholar
Bumann, E. (2017). Assessing Responses of Betula papyrifera (Paper Birch) to Climate Variability in a Remnant Population Along the Niobrara River in Nebraska Through Dendroecological and Remote Sensing Techniques (Dissertations & Theses in Natural Resources 161). Lincoln, Nebraska. http://digitalcommons.unl.edu/natresdiss/161. Accessed 26 October 2018.
Bunn, A. G., Hughes, M. K., Kirdyanov, A. V., Losleben, M., Shishov, V. V., Berner, L. T., et al. (2013). Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 8, 35034. https://doi.org/10.1088/1748-9326/8/3/035034
Article
Google Scholar
Coops, N., Bi, H., Barnett, P., & Ryan, P. (1999). Estimating mean and current annual increments of stand volume in a regrowth eucalypt forest using historical Landsat multi spectral scanner imagery. Journal of Sustainable Forestry, 9, 149–168. https://doi.org/10.1300/J091v09n03_07
Article
Google Scholar
D’Arrigo, R. D., Kaufmann, R. K., Davi, N., Jacoby, G. C., Laskowski, C., Myneni, R. B., et al. (2004). Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 18. https://doi.org/10.1029/2004GB002249
D’Arrigo, R. D., Malmstrom, C. M., Jacoby, G. C., Los, S. O., & Bunker, D. E. (2000). Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. International Journal of Remote Sensing, 21, 2329–2336. https://doi.org/10.1080/01431160050029611
Article
Google Scholar
Dulamsuren, C., Hauck, M., & Leuschner, C. (2010). Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biology, 16, no-no. https://doi.org/10.1111/j.1365-2486.2009.02147.x
Dulamsuren, C., Hauck, M., Leuschner, H. H., & Leuschner, C. (2011). Climate response of tree-ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Annals of Forest Science, 68, 275–282. https://doi.org/10.1007/s13595-011-0043-9
Article
Google Scholar
Dulamsuren, C., Klinge, M., Bat-Enerel, B., Ariunbaatar, T., & Tuya, D. (2019). Effects of forest fragmentation on organic carbon pool densities in the Mongolian forest-steppe. Forest Ecology and Management, 433, 780–788. https://doi.org/10.1016/j.foreco.2018.10.054
Article
Google Scholar
Dulamsuren, C., Wommelsdorf, T., Zhao, F., Xue, Y., Zhumadilov, B. Z., Leuschner, C., et al. (2013). Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of Eastern Kazakhstan. Ecosystems, 16, 1536–1549. https://doi.org/10.1007/s10021-013-9700-1
CAS
Article
Google Scholar
Eckert, S., Hüsler, F., Liniger, H., & Hodel, E. (2015). Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments, 113, 16–28. https://doi.org/10.1016/j.jaridenv.2014.09.001
Article
Google Scholar
Eitel, J. U. H., Griffin, K. L., Boelman, N. T., Maguire, A. J., Meddens, A. J. H., Jensen, J., et al. (2020). Remote sensing tracks daily radial wood growth of evergreen needleleaf trees. Global Change Biology, 26, 4068–4078. https://doi.org/10.1111/gcb.15112
Article
Google Scholar
Fensholt, R., & Proud, S. R. (2012). Evaluation of Earth Observation based global long term vegetation trends — Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 119, 131–147. https://doi.org/10.1016/j.rse.2011.12.015
Article
Google Scholar
Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M., Neigh, C., & Reichstein, M. (2013). Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113–2144. https://doi.org/10.3390/RS5052113
Article
Google Scholar
Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., et al. (2002). Forest carbon sinks in the northern hemisphere. Ecological Applications, 12, 891–899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
Article
Google Scholar
Hais, M., Chytrý, M., & Horsák, M. (2016). Exposure-related forest-steppe: A diverse landscape type determined by topography and climate. Journal of Arid Environments, 135, 75–84. https://doi.org/10.1016/j.jaridenv.2016.08.011
Article
Google Scholar
Hauck, M., Leuschner, C., & Homeier, J. (2019). Klimawandel und Vegetation - Eine globale Übersicht. Berlin, Heidelberg: Springer Spektrum.
He, J., & Shao, X. (2006). Relationships between tree-ring width index and NDVI of grassland in Delingha. Chinese Science Bulletin, 51, 1106–1114. https://doi.org/10.1007/s11434-006-1106-4
Article
Google Scholar
Hilbig, W. (1995). The Vegetation of Mongolia. SPB Acad. Publ.
Google Scholar
Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7, 1417–1434. https://doi.org/10.1080/01431168608948945
Article
Google Scholar
Ivanova, Y., Kovalev, A., & Soukhovolsky, V. (2021). Modeling the Radial Stem Growth of the Pine (Pinus sylvestris L.) Forests Using the Satellite-Derived NDVI and LST (MODIS/AQUA) Data. Atmosphere, 12, 12. https://doi.org/10.3390/atmos12010012
Kaufmann, R. K., D’Arrigo, R. D., Laskowski, C., Myneni, R. B., Zhou, L., & Davi, N. K. (2004). The effect of growing season and summer greenness on northern forests. Geophysical Research Letters. https://doi.org/10.1029/2004GL019608
Article
Google Scholar
Khansaritoreh, E., Dulamsuren, C., Klinge, M., Ariunbaatar, T., Bat-Enerel, B., Batsaikhan, G., et al. (2017). Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe. Global Change Biology, 23, 3675–3689. https://doi.org/10.1111/gcb.13750
Article
Google Scholar
Khansaritoreh, E., Schuldt, B., & Dulamsuren, C. (2018). Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Annals of Forest Science. https://doi.org/10.1007/s13595-018-0701-2
Klinge, M., Dulamsuren, C., Erasmi, S., Karger, D. N., & Hauck, M. (2018). Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosciences, 15, 1319–1333. https://doi.org/10.5194/bg-15-1319-2018.
Article
Google Scholar
Klinge, M., Schneider, F., Dulamsuren, C., Arndt, K., Bayarsaikhan, U., & Sauer, D. (2021). Interrelations between relief, vegetation, disturbances, and permafrost in the forest-steppe of central Mongolia. accepted. Earth Surface Processes and Landforms.
Liu, L. (2016). Opportunities of mapping forest carbon stock and its annual increment using Landsat time-series data. Geoinformatics & Geostatistics: An Overview. https://doi.org/10.4172/2327-4581.1000151
Article
Google Scholar
Lkhagvadorj, D., Hauck, M., Dulamsuren, C., & Tsogtbaatar, J. (2013). Pastoral nomadism in the forest-steppe of the Mongolian Altai under a changing economy and a warming climate. Journal of Arid Environments, 88, 82–89. https://doi.org/10.1016/j.jaridenv.2012.07.019
Article
Google Scholar
Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2015). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9, 63–105. https://doi.org/10.1080/17538947.2014.990526
Article
Google Scholar
Main-Knorn, M., Cohen, W. B., Kennedy, R. E., Grodzki, W., Pflugmacher, D., Griffiths, P., et al. (2013). Monitoring coniferous forest biomass change using a Landsat trajectory-based approach. Remote Sensing of Environment, 139, 277–290. https://doi.org/10.1016/j.rse.2013.08.010
Article
Google Scholar
Nyamjav, B., Goldammer, J.G., & Uibrig, H. (2007). Fire situation in Mongolia. In International Forest Fire News, 36, 46–66.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993. https://doi.org/10.1126/science.1201609
Powell, S. L., Cohen, W. B., Healey, S. P., Kennedy, R. E., Moisen, G. G., Pierce, K. B., et al. (2010). Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053–1068. https://doi.org/10.1016/j.rse.2009.12.018
Article
Google Scholar
Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E., Hoscilo, A., et al. (2019). Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 77, 53–68. https://doi.org/10.1016/j.jag.2018.12.008
Article
Google Scholar
Rouse, J. W., Hass, R., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In NASA. Goddard Space Flight Center (Ed.) (1, Sect. A, pp. 309–317).
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., et al. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024
Article
Google Scholar
Sangüesa-Barreda, G., Camarero, J. J., García-Martín, A., Hernández, R., & de La Riva, J. (2014). Remote-sensing and tree-ring based characterization of forest defoliation and growth loss due to the Mediterranean pine processionary moth. Forest Ecology and Management, 320, 171–181. https://doi.org/10.1016/j.foreco.2014.03.008
Article
Google Scholar
Schlütz, F., Dulamsuren, C., Wieckowska, M., Mühlenberg, M., & Hauck, M. (2008). Late Holocene vegetation history suggests natural origin of steppes in the northern Mongolian mountain taiga. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 203–217. https://doi.org/10.1016/j.palaeo.2007.12.012
Article
Google Scholar
Sugimoto, A., Yanagisawa, N., Naito, D., Fujita, N., & Maximov, T. C. (2002). Importance of permafrost as a source of water for plants in east Siberian taiga. Ecological Research, 17, 493–503. https://doi.org/10.1046/j.1440-1703.2002.00506.x
Article
Google Scholar
Testa, S., Soudani, K., Boschetti, L., & Borgogno Mondino, E. (2018). MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. International Journal of Applied Earth Observation and Geoinformation, 64, 132–144. https://doi.org/10.1016/j.jag.2017.08.006
Article
Google Scholar
Thomas, N. E., Huang, C., Goward, S. N., Powell, S., Rishmawi, K., Schleeweis, K., et al. (2011). Validation of North American Forest Disturbance dynamics derived from Landsat time series stacks. Remote Sensing of Environment, 115, 19–32. https://doi.org/10.1016/j.rse.2010.07.009
Article
Google Scholar
Treter, U. (1996). Gebirgs-Waldsteppe in der Mongolei. Geo-graphische Rundschau, 48(11), 655–661.
Google Scholar
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.
Article
Google Scholar
Turco, M., Palazzi, E., von Hardenberg, J., & Provenzale, A. (2015). Observed climate change hotspots. Geophysical Research Letters, 42, 3521–3528. https://doi.org/10.1002/2015GL063891
Article
Google Scholar
U.S. Geological Survey. (2019a). Landsat 4–7 Surface Reflectance (LEDAPS) Product Guide. Version 2.0 (LSDS-1370). Sioux Falls, South Dakota. https://www.usgs.gov/media/files/landsat-4-7-surface-reflectance-code-ledaps-product-guide. Accessed 23 August 2019.
U.S. Geological Survey. (2019b). Landsat 8 Surface Reflectance Code (LASRC) Product Guide. Version 2.0 (LSDS-1368). Sioux Falls, South Dakota. https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide. Accessed 23 August 2019.
U.S. Geological Survey. (2019c). Landsat Collection 1 Level 1 Product Definition (LSDS-1656). Sioux Falls, South Dakota. https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con. Accessed 27 August 2019.
U.S. Geological Survey, Earth Resources Observation and Science Center. (2012a). Collection-1 Landsat ETM+ Level-2 Surface Reflectance (SR) Science Product. https://doi.org/10.5066/F7Q52MNK
U.S. Geological Survey, Earth Resources Observation and Science Center. (2012b). Collection-1 Landsat TM Level-2 Surface Reflectance (SR) Science Product. https://doi.org/10.5066/F7KD1VZ9
U.S. Geological Survey, Earth Resources Observation Science Center. (2014). Collection-1 Landsat OLI Level-2 Surface Reflectance (SR) Science Product. https://doi.org/10.5066/F78S4MZJ
Vaganov, E. A., Schulze, E.-D., Skomarkova, M. V., Knohl, A., Brand, W. A., & Roscher, C. (2009). Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia, 161, 729–745. https://doi.org/10.1007/s00442-009-1421-y
Article
Google Scholar
Venables, W. N., & Ripley, B. D. (2011). Modern Applied Statistics with S (4th ed., Statistics and computing). New York, London: Springer.
Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., et al. (2016). Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 187, 14–29. https://doi.org/10.1016/j.rse.2016.10.001
Article
Google Scholar
Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25, 3127–3138. https://doi.org/10.1080/0143116032000160499
Article
Google Scholar
Xu, P., Fang, W., Zhou, T., Zhao, X., Luo, H., Hendrey, G., et al. (2019). Spatial upscaling of tree-ring-based forest response to drought with satellite data. Remote Sensing, 11, 2344. https://doi.org/10.3390/rs11202344
Article
Google Scholar
Zhou, Y., Yi, Y., Jia, W., Cai, Y., Yang, W., & Li, Z. (2020). Applying dendrochronology and remote sensing to explore climate-drive in montane forests over space and time. Quaternary Science Reviews, 237, 106292. https://doi.org/10.1016/j.quascirev.2020.106292
Article
Google Scholar