Skip to main content

Advertisement

Log in

Nature and sources of ionic species in rainwater during monsoon periods in and around sixteenth–seventeenth century CE monuments in Yamuna River basin, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The nature and sources of ionic species were studied in the monsoon rainwater collected from two monuments of the sixteenth–seventeenth century CE in the Yamuna River basin from 2016 to 2018. The results showed the acidic pH of the rainwater with high dissolved SO4−2 and NO3, and soil-derived components (Ca+2, Mg+2, and K+). The anionic (SO4−2, NO3, Cl, F, and HCO3) and cationic (Ca+2, Mg+2, K+, NH4+, and Na+) concentrations showed regional differences in yearly contribution mainly from the fossil fuel combustion, soil dust, and farm residue burning. The rainwater analysis showed low dissolved ions at SCTK (Sheikh Chilli’s Tomb, Kurukshetra) compared to KBMP (Kabuli Bagh Mosque, Panipat). The mean concentration of SO4−2 was 1.5 times higher than the NO3 apportioning the sulfate as a dominant acidifying constituent in rainwater. Pearson’s correlation and principal component analysis (PCA) showed terrestrial and marine origins of dissolved ions in the rainwater. The Na-normalized molar ratios and the analysis of sea salt and non-sea salt fractions indicate the dominance of non-marine contributions in the precipitation. Based on neutralization factors, cations showed neutralization of rainwater acidity as follows: NFCa+2 > NFMg+2 > NFNH4+ > NFK+. The potential index showed the dominance of the neutralization potential (NP) on acidic potential (AP) at both locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., & Rao, P. S. P. (2004). Fog and precipitation chemistry at Delhi, North India. Atmospheric Environment, 38, 4215–4222.

    Article  CAS  Google Scholar 

  • Al-Khashman, O. (2009). Chemical characteristics of rainwater collected at a western site of Jordan. Atmospheric Research, 91, 53–61.

    Article  CAS  Google Scholar 

  • APHA. (1995). American Public Health Association standard methods for estimation of water and wastewater (19th ed.). Washington: American Water Works Association, Water Environment Federation.

    Google Scholar 

  • Balasubramanian, R., Victor, T., & Chun, N. (2001). Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Polluttion, 130, 451–456.

    Article  Google Scholar 

  • Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., & Chazot, G. (2008). Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60(3), 253–271.

    Article  CAS  Google Scholar 

  • Budhavant, K. B., Rao, P. S. P., Safai, P. D., & Ali, K. (2011). Influence of local sources on rainwater chemistry over Pune region, India. Atmospheric Research, 100, 121–131.

    Article  CAS  Google Scholar 

  • Calvo, A. I., Olmo, F. J., Lyamani, H., Alados-Arboledas, L., Castro, A., Fernandez-Raga, M., & Fraile, R. (2010). Chemical composition of wet precipitation at the background EMEP station in Víznar (Granada, Spain) (2002-2006). Atmospheric Research, 96, 408–420.

    Article  CAS  Google Scholar 

  • Camuffo, D. (1998). Microclimate for cultural heritage. Developments in Atmospheric Science, 23 (p. 415). Amsterdam: Elsevier.

    Google Scholar 

  • Casimiro, A. P., Salgueiro, M. L., & Nunes, V. T. (1991). Seasonal and air-mass trajectory effects on rainwater quality at the south-western European border. Atmospheric Environment, 25, 2259–2266.

    Article  Google Scholar 

  • Census of India. (2011). www.censusindia.gov.in

  • Cerqueira, M. R. F., Pinto, M. F., Derossi, I. N., Esteves, W. T., Santos, M. D. R., Matos, M. A. C., Lowinsohn, D., & Matos, R. C. (2014). Chemical characteristics of rainwater at a southeastern site of Brazil. Atmospheric Pollution Research, 5, 253–261.

    Article  CAS  Google Scholar 

  • Charlson, R. J., & Rodhe, H. (1982). Factors controlling the acidity of natural rainwater. Nature, 295, 683–885.

    Article  CAS  Google Scholar 

  • Chate, D. M., & Devara, P. C. S. (2009). Acidity of raindrop by uptake of gases and aerosol pollutants. Atmospheric Environment, 43, 1571–1577.

    Article  CAS  Google Scholar 

  • D’ Ayala, D., & Aktas, Y. D. (2016). Moisture dynamics in the masonry fabric of historic buildings subjected to wind-driven rain and flooding. Building and Environment, 104, 208–220.

    Article  Google Scholar 

  • Das, R., Das, S., & Misra, V. (2005). Chemical composition of rainwater and dust fall at Bhubaneswar in the east coast of India. Atmospheric Environment, 39, 5908–5916.

    Article  CAS  Google Scholar 

  • Delgado, J. M. P. Q., Guimaraes, A. S., De Freitas, V. P., Antepara, I., Koci, V., & Cerny, R. (2016). Salt damage and rising damp treatment in building structures. Advances in Building Technologies and Construction Materials. https://doi.org/10.1155/2016/1280894.

  • Fujita, S., Takahashi, A., Wong, J., Huang, L., Kim, H., Li, C., Huang, F. T. C., & Jeng, F. (2000). Precipitation chemistry in East Asia. Atmospheric Environment, 34, 525–537.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Likens, G. E., Keene, W. C., & Miller, J. M. (1982). The composition of precipitation in remote areas of the world. Journal of Geophysical Research, 87, 8771–8776.

    Article  CAS  Google Scholar 

  • Galy-Lacaux, C., Carmichael, G. R., Song, C. H., Lacaux, J. P., & Modi, I. (2001). Heterogeneous processes involving nitrogenous compounds and saharan dust inferred from measurements and model calculations region. Journal of Geophysical Research, 106, 12559–12578.

    Article  CAS  Google Scholar 

  • Galy-Lacaux, C., Laouali, D., Descroix, L., Gobron, N., & Liousse, C. (2009). Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger). Atmospheric Chemistry and Physics, 9, 1579–1595.

    Article  CAS  Google Scholar 

  • Gioda, A., Mayol-Bracero, O. L., Scatena, F. N., Weathers, K. C., Mateus, V. L., & Mc Dowell, W. H. (2013). Chemical constituents in clouds and rainwater in the Puerto Rican rainforest: potential sources and seasonal drivers. Atmospheric Environment, 68, 208–220.

    Article  CAS  Google Scholar 

  • Gong, W., Stroud, C., & Zhang, L. (2011). Cloud processing of gases and aerosols in air quality modeling. Atmosphere, 2(4), 567–616.

    Article  CAS  Google Scholar 

  • Hall, C., & Hoff, W. D. (2002). Water transport in brick, stone, and concrete. London: New York, Spon Press.

    Book  Google Scholar 

  • Herrera, J., Rodriguez, S., & Baez, A. P. (2009). Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America. Atmospheric Research, 94, 151–160.

    Article  CAS  Google Scholar 

  • Hu, G. P., Balasubramanian, R., & Wu, C. D. (2003). Chemical characterization of rainwater at Singapore. Chemosphere, 51, 747–755.

    Article  CAS  Google Scholar 

  • IMD. (2018). Indian Meteorological Department, www. mausam.imd.gov.in.

  • Kajino, M., & Aikawa, M. (2015). Atmospheric Environment, 117, 124-134, A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan, 124.

  • Keene, W. C., Pszenny, A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea salt corrections and interpretations of constituent ratios in marine precipitation. Journal of Geophysical Research, 91, 6647–6658.

    Article  CAS  Google Scholar 

  • Keresztesi, Á., Birsan, M.-V., Nita, I.-A., Bodor, Z., & Szép, R. (2019). Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000-2017. Environmental Sciences Europe, 31. https://doi.org/10.1186/s12302-019-0234-9.

  • Khemani, L. T., Momin, G. A., Rao, P. S. P., Pillai, A. G., Safai, P. D., Mohan, K., & Rao, M. G. (1994). Atmospheric pollutants and their influence on acidification of rain water at an industrial location on the west coast of India. Atmospheric Environment, 28, 3145–3154.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., & Parashar, D. C. (1996). Investigation into atmospheric deposition through precipitation studies at New Delhi (India). Atmospheric Environment, 30(24), 4149–4154.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Kulshrestha, M. J., Sekar, R., Sastry, G. S. R., & Vairamani, M. (2003). Chemical characteristics of rainwater at an urban site of south central India. Atmospheric Environment, 37, 3019–3026.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Granat, L., Engardt, M., & Rodhe, H. (2005). Review of precipitation chemistry studies in India -a search for regional patterns. Atmospheric Environment, 39, 7403–7419.

    Article  CAS  Google Scholar 

  • Kumar, P., Yadav, S., & Kumar, A. (2014). Sources and processes governing rainwater chemistry in New Delhi, India. Nat Hazards. https://doi.org/10.1007/s11069-014-1295-0.

  • Kumar, A., Singh, N., & Anshumali, & Solanki, R. (2018). Evaluation and utilization of MODIS and CALIPSO aerosol retrievals over a complex terrain in Himalaya. Remote Sensing of Environment, 206, 139–155.

    Article  Google Scholar 

  • Lacasse, M. A., Gaur, A., & Moore, T. V. (2020). Durability and climate change implications for service life prediction and the maintainability of buildings. Buildings, 10. https://doi.org/10.3390/buildings10030053.

  • Matawle, J. L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M. K., & Pervez, Y. (2015). Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research, 15, 2537–2548.

    Article  CAS  Google Scholar 

  • Mohammad, A. H., Obaidya, J. A., & Joshi, H. (2006). Chemical composition of rainwater in a tropical urban area of northern India. Atmospheric Environment, 40, 6886–6891.

    Article  Google Scholar 

  • Naik, M. S., Momin, G. A., Rao, P. S. P., Safai, P. D., & Ali, K. (2002). Chemical composition of rainwater around an industrial region in Mumbai. Current Science, 82(9), 1131–1137.

    CAS  Google Scholar 

  • Niu, H., He, Y., Lu, X. X., Shen, J., Du, J., Zhang, T., Pu, T., Xin, H., & Chang, L. (2014). Chemical composition of rainwater in the Yulong Snow Mountain region, Southwestern China. Atmospheric Research, 144, 195–206.

    Article  CAS  Google Scholar 

  • Niu, H., Kang, S., Wang, H., Zhang, R., Lu, X., Qian, Y., Paudyal, R., Wang, S., Shi, X., & Yan, X. (2018). Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics, 18, 6441–6460.

    Article  CAS  Google Scholar 

  • Norman, M., Das, A. N., Pillai, A. G., Granat, L., & Rodhe, H. (2001). Influence of air mass trajectories on the chemical composition of precipitation in India. Atmospheric Environment (UK), 35, 4223–4235.

    Article  CAS  Google Scholar 

  • Parashar, D. C., Granet, L., Kulshreshtha, U. C., Pillai, A. G., Naik, M. S., & Momin, G. A. (1996). Chemical composition of precipitation in India and Nepal. In A preliminary report on an Indo-Swedish project on atmospheric chemistry, Report CM-90. Sweden: IMI and Stockholm University.

    Google Scholar 

  • Payus, C. M., Jikilim, C., & Sentian, J. (2020). Rainwater chemistry of acid precipitation occurrences due to long-range transboundary haze pollution and prolonged drought events during southwest monsoon season: climate change driven. Heliyon, 6, e04997. https://doi.org/10.1016/j.heliyon.2020.e04997.

    Article  CAS  Google Scholar 

  • Perez-Monserrat, E. M., Varas-Muriel, M. J., De Buergo, M. A., & Fort, R. (2016). Black layers of decay and color patterns on heritage limestone as markers of environmental change. Geosciences, 6. https://doi.org/10.3390/geosciences6010004.

  • Rajeev, P., Rajput, P., & Gupta, T. (2016). Chemical characteristics of aerosol and rain water during an El Nino and PDO influenced Indian summer monsoon. Atmospheric Environment, 145, 192–200.

    Article  CAS  Google Scholar 

  • Rao, P. S. P., Tiwari, S., Matwale, J. L., Pervez, S., Tunved, P., Safai, P. D., Srivastava, A. K., Bisht, D. S., Singh, S., & Hopke, P. K. (2016). Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 146, 90–99.

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2005). Chemical characteristics of individual rain events from a semi-arid region in India: three-year study. Atmospheric Environment, 39, 3313–3323.

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2007). Chemistry of precipitation events and inter-relationship with ambient aerosols over a semi-arid region in western India. Journal of Atmospheric Chemistry, 56, 149–163.

    Article  CAS  Google Scholar 

  • Rocha, F. R., Silva, J. A. F., Lago, C. L., Fornaro, A., & Gutz, I. G. R. (2003). Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil: part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmospheric Environment, 37, 105–115.

    Article  CAS  Google Scholar 

  • Sabbioni, C., Cassar, M., Brimblecombe, P., Tidblad, J., Kozlowski, R., & Drdacky, M. (2006). Global climate change impact on built heritage and cultural landscapes. Milton Park, UK: Taylor & Francis Ltd.

    Google Scholar 

  • Safai, P. D., Rao, P. S. P., Momin, G. A., Ali, K., Chate, D. M., & Praveen, P. S. (2004). Chemical composition of precipitation during 1984-2002 at Pune. India. Atmospheric Environment, 38, 1705–1714.

    Article  CAS  Google Scholar 

  • Salve, P. R., Maurya, A., Wate, S. R., & Devotta, S. (2008). Chemical composition of major ions in rainwater. Bulletin of environmental contamination and toxicology, 80, 242–246.

    Article  CAS  Google Scholar 

  • Salve, P. R., Gobre, T., Lohkare, H., Krupadam, R. J., Bansiwal, A., Ramteke, D. S., & Wate, S. R. (2011). Source identification and variation in the chemical composition of rainwater at coastal and industrial areas of India. Journal of Atmospheric Chemistry, 68, 183–198.

    Article  CAS  Google Scholar 

  • Sanusi, A., Wortham, H., Millet, M., & Mirabel, P. (1996). Chemical composition of rainwater in eastern France. Atmospheric Environment, 30, 59–71.

    Article  CAS  Google Scholar 

  • Seinfield, J. H. (1986). Atmospheric chemistry and physics of air pollution (p. 219). New York: Wiley.

    Google Scholar 

  • Shukla, S. P., & Sharma, M. (2010). Neutralization of rainwater acidity at Kanpur, India. Tellus- Series-B Chemical and Physical Metrology, 62B, 172–180.

    Article  CAS  Google Scholar 

  • Singh, A. S., & Mondal, G. C. (2008). Chemical characterization of wet precipitation events and deposition of pollutants in coal mining region, India. Journal of Atmospheric Chemistry, 59, 1–23.

    Article  CAS  Google Scholar 

  • Statistical Abstract of Haryana. (2018-19). Department of Economic and Statistical, www.esaharyana.gov.in

  • Szép, R., Mateescu, E., Nița, I. A., Birsan, M. V., Bodor, Z., & Keresztesi, Á. (2018). Effects of the Eastern Carpathians on atmospheric circulations and precipitation chemistry from 2006 to 2016 at four monitoring stations (Eastern Carpathians, Romania). Atmospheric Research, 214, 311–328.

    Article  Google Scholar 

  • Szép, R., Bodor, Z., Miklóssy, I., Nița, I. A., Oprea, O. A., & Keresztesi, Á. (2019). Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). Science of Total Environment, 647, 275–289.

    Article  Google Scholar 

  • Tiwari, S., Kulshrestha, U. C., & Padmanabhamurty, B. (2007). Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India. Atmospheric Environment, 41, 5595–5604.

    Article  CAS  Google Scholar 

  • Tiwari, S., Chate, D. M., Bisht, D. S., Srivastava, M. K., & Padmanabhamurty, B. (2012). Rainwater chemistry in the North Western Himalayan Region of India. Atmospheric Research, 104, 128–138.

    Article  Google Scholar 

  • Tiwari, S., Hopke, P. K., Thimmiah, D., Dumka, U. C., Srivastava, A. K., Bisht, D. S., Rao, P. S. P., Chate, D. M., Srivastava, M. K., & Tripathi, S. N. (2016). Nature and sources of ionic species in precipitation across the Indo-Gangetic Plains, India. Aerosol and Air Quality Research, 16, 943–957.

    Article  CAS  Google Scholar 

  • Torres, M. I., & Freitas, V. P. (2003). Rising damp in historical buildings. Research in building physics-Proceedings of the Second International Conference on Building Physics. (pp. 369-375). Leuven, Belgium.

  • Tyagi, S., Tiwari, S., Mishra, A., Chatterjee, A., & Bisht, D. S. (2016). Chemical characteristics of precipitation during winter season over Delhi: source identification of measured species. Earth Science India, 9(4), 150–166.

    Article  Google Scholar 

  • Uchiyama, R., Okochi, H., Katsumi, N., & Ogata, H. (2017). The impact of air pollutants on rainwater chemistry during “urban-induced heavy rainfall” in downtown Tokyo. Japan. Journal of Geophysical Research: Atmosphere, 122, 6502–6519. https://doi.org/10.1002/2017JD026803.

    Article  CAS  Google Scholar 

  • Viles, H. A. (2011). Weathering systems, Chapter 6. In D. S. G. Thomas (Ed.), Arid zone geomorphology: process, form and change in drylands, 3rd ed (p. 648). Wiley.

  • Xu, Z. F., & Han, G. L. (2009). Chemical and strontium isotope characterization of rainwater in Beijing, China. Atmospheric Environment, 43(12), 1954–1961.

    Article  CAS  Google Scholar 

  • Xu, Z., Yao, W., Liua, W.-J., Liang, C.-S., Ji, J., Zhao, T., & Zhanga, X. (2015). Chemical composition of rainwater and the acid neutralizing effect at Beijing and Chizhou city. China. Atmospheric Research, 164-165, 278–285. https://doi.org/10.1016/j.atmosres.2015.05.009.

    Article  CAS  Google Scholar 

  • Yang, L., Mukherjee, S., Pandithurai, G., Waghmare, V., & &. Safai, P. D. (2019). Influence of dust and sea-salt sandwich effect on precipitation chemistry over the Western Ghats during summer monsoon. Scientific Reports, 9, 19171. https://doi.org/10.1038/s41598-019-55245-0.

  • Zeng, J., Han, G., Wu, Q., & Yang, T. (2020). Effects of agricultural alkaline substances on reducing the rainwater acidification: insight from chemical compositions and calcium isotopes in a karst forests area. Agriculture Ecosystems & Environment, 290, 106782. https://doi.org/10.1016/j.agee.2019.106782.

    Article  CAS  Google Scholar 

  • Zhang, X., Jiang, H., Zhang, Q., & Zhang, X. (2012). Chemical characteristics of rainwater in northeast China, a case study of Dalian. Atmospheric Research, 116, 151–160.

    Article  CAS  Google Scholar 

  • Zhang, L., Qiao, B., Wang, H., Tian, M., Cui, J., Fu, C., Huang, Y., & Yang, F. (2018). Chemical characteristics of precipitation in a typical urban site of the hinterland in Three Gorges Reservoir. China. Journal of Chemistry, 2018, 1–10. https://doi.org/10.1155/2018/2914313.

    Article  CAS  Google Scholar 

  • Zhao, Z., Tian, L., Fischer, E., Li, Z., & Jiao, K. (2008). Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, Eastern Tien Shan, China. Atmospheric Environment, 42, 8934–8942.

    Article  CAS  Google Scholar 

  • Zunckel, M., Saizar, C., & Zarauz, J. (2003). Rainwater composition in northeast Uruguay. Atmospheric Environment, 37, 1601–1611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Environmental Science and Engineering, IIT (ISM) Dhanbad and Archaeological Survey of India for providing laboratory facilities and logistic support to carry out Ph.D. of Mr. Amit Kumar Mishra (2015DR1138). We greatly appreciate the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshumali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A.K., Anshumali Nature and sources of ionic species in rainwater during monsoon periods in and around sixteenth–seventeenth century CE monuments in Yamuna River basin, India. Environ Monit Assess 193, 86 (2021). https://doi.org/10.1007/s10661-021-08889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08889-3

Keywords

Navigation