Skip to main content

Advertisement

Log in

Seven-year study of monsoonal rainwater chemistry over the mid-Brahmaputra plain, India: assessment of trends and source regions of soluble ions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work is a 7-year study of monsoonal rainwater chemistry (n = 302), over mid-Brahmaputra plain during 2012 to 2018. The samples were analyzed for major chemical parameters viz. pH, electrical conductivity (EC), and ions (SO42−, NO3, Br, Cl, F, Mg2+, Ca2+, K+, NH4+, Na+, and Li+) to assess the chemistry. The mean pH of rainwater varied among the years, which was maximum in 2018 (6.18 ± 0.72) and minimum in the year 2014 (5.39 ± 0.54), and the variations were significant at p < 0.0001. Ridgeline plots were drawn to visualize interannual variations, which revealed that Ca2+ was the dominant cation in the early years, whereas NH4+ prevailed in the latter years. Mann–Kendall analysis and Sen’s slope statistical tests were employed, and it was found that all the ions showed positive S values indicating increasing trends. Enrichment factors (EF) of K+, SO42−, and NO3 were found to be high with respect to both soil and seawater suggesting the influence of emissions from fossil fuel and biomass burning in the chemistry of rainwater. Principal component analysis (PCA) was applied to identify the sources of rain constituents, and five factors were obtained explaining crustal dust, biomass burning, fossil fuel combustion, agricultural emissions, and coal burning as possible sources. Airmass back trajectory clusters and Potential Source Contribution Function (PSCF) were computed by application of HYbrid Single-Particle Lagrangian Integrated Trajectory model to appreciate the terrestrial influence on the chemistry. The results indicated inputs from both local and regional dust and anthropogenic constituents that influenced the monsoonal rainwater chemistry over Brahmaputra Valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed for this study are included in this published article (and its supplementary information files).

References

  • Adhikari S, Zhang F, Adhikari NP, Zeng C, Pant RR, Ram K, Liu Y, Ahmed N, Xu J, Tripathee L, Zhang Q (2021) Atmospheric wet deposition of major ionic constituents and inorganic nitrogen in Bangladesh: implications for spatiotemporal variation and source apportionment. Atmos Res 250:105414

    CAS  Google Scholar 

  • Akpo AB, Galy-Lacaux C, Laouali D, Delon C, Liousse C, Adon M, Gardrat E, Mariscal A, Darakpa C (2015) Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin). Atmos Environ 115:110–123

    CAS  Google Scholar 

  • Ali K, Momin GA, Tiwari S, Safai PD, Chate DM, Rao PSP (2004) Fog and precipitation chemistry at Delhi North India. Atmos Environ 38(25):4215–4222

    CAS  Google Scholar 

  • Al-Khashman OA (2009) Chemical characteristics of rainwater collected at a western site of Jordan. Atmos Res 91(1):53–61

    CAS  Google Scholar 

  • Al-Momani IF, Güllü G, Ölmez I, Eler Ü, Örtel E, Sirin G, Tuncel G (1997) Chemical composition of eastern Mediterranean aerosol and precipitation: indications of long-range transport. Pure Appl Chem 69(1):41–46

    CAS  Google Scholar 

  • Ando M, Tadan M, Yamamoto S, Tamura K, Asanuma S, Watanabe T, Kondo T, Sakurai S, Ji R, Liang C, Chen X, Hong Z, Cao S (2001) Health effects of fluoride pollution caused by coal burning. Sci Total Environ 271:107–116

    CAS  Google Scholar 

  • Aneja VP, Roelle PA, Murray GC, Southerland J, Erisman JW, Fowler D, Asman WA, Patni N (2001) Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmos Environ 35(11):1903–1911

    CAS  Google Scholar 

  • Balachandran S, Khillare PS (2001) Occurrence of acid rain over Delhi. Environ Monit Assess 71(2):165–176

    CAS  Google Scholar 

  • Balasubramanian R, Victor T, Chun NJWA (2001) Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Pollut 130(1–4):451–456

    Google Scholar 

  • Begum BA, Hopke PK, Markwitz A (2013) Air pollution by fine particulate matter in Bangladesh. Atmos Pollut Res 4(1):75–86

    CAS  Google Scholar 

  • Bhaskar VV, Rao PSP (2017) Annual and decadal variation in chemical composition of rain water at all the ten GAW stations in India. J Atmos Chem 74(1):23–53

    CAS  Google Scholar 

  • Bhuyan P, Ahmed MS, Hopke PK, Hoque RR (2020) Understanding the chemistry and sources of precipitation ions in the mid-Brahmaputra valley of northeastern India. Aerosol Air Qual Res 20:2690–2704

    CAS  Google Scholar 

  • Bhuyan P, Barman N, Begum S, Gogoi D, Borah S, Kumar M, Hoque RR (2016a) Spatial and seasonal variations of water soluble ions in PM 10 of mid-Brahmaputra plain of Assam Valley. Asian J Water Environ Pollut 13(2):69–81

    CAS  Google Scholar 

  • Bhuyan P, Barman N, Bora J, Daimari R, Deka P, Hoque RR (2016b) Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmos Environ 142:194–209

    CAS  Google Scholar 

  • Bhuyan P, Deka P, Prakash A, Balachandran S, Hoque RR (2018) Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ Pollut 234:997–1010

    CAS  Google Scholar 

  • Bisht DS, Srivastava AK, Joshi H, Ram K, Singh N, Naja M, Srivastava MK, Tiwari S (2017) Chemical characterization of rainwater at a high-altitude site “Nainital” in the central Himalayas, India. Environ Sci Pollut Res 24(4):3959–3969

    CAS  Google Scholar 

  • Bisht DS, Tiwari S, Srivastava AK, Singh JV, Singh BP, Srivastava MK (2015) High concentration of acidic species in rainwater at Varanasi in the Indo-Gangetic Plains, India. Nat Hazards 75(3):2985–3003

    Google Scholar 

  • Bora J, Deka P, Bhuyan P, Sarma KP, Hoque RR (2021) Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: application of SEM–EDX, XRD, and FTIR techniques. SN Appl Sci 3(1):1–15

    Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van Der Hoek KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cycles 11(4):561–587

    CAS  Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Ah K (2009) Chemistry of monsoon and post-monsoon rains at a high altitude location, Sinhagad, India. Aerosol Air Qual Res 9(1):65–79

    CAS  Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Ali K (2011) Influence of local sources on rainwater chemistry over Pune region, India. Atmos Res 100(1):121–131

    CAS  Google Scholar 

  • Cao YZ, Wang S, Zhang G, Luo J, Lu S (2009) Chemical characteristics of wet precipitation at an urban site of Guangzhou South China. Atmos Res 94(3):462–469

    CAS  Google Scholar 

  • Charlson RJ, Rodhe H (1982) Factors controlling the acidity of natural rainwater. Nature 295(5851):683–685

    CAS  Google Scholar 

  • Chatterjee A, Jayaraman A, Rao TN, Raha S (2010) In-cloud and below-cloud scavenging of aerosol ionic species over a tropical rural atmosphere in India. J Atmos Chem 66(1):27–40

    CAS  Google Scholar 

  • Chatterjee J, Singh SK (2012) 87Sr/86Sr and major ion composition of rainwater of Ahmedabad, India: sources of base cations. Atmos Environ 63:60–67

    CAS  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678

    CAS  Google Scholar 

  • Das N, Baral SS, Mahapatra PS, Das T, Chaudhury GR, Das SN (2012) Trend in chemical composition of precipitation during 2005–2009 at a rural station of Bhubaneswar, eastern India. Theor Appl Climatol 110(1–2):55–63

    Google Scholar 

  • Das N, Das R, Chaudhury GR, Das SN (2010) Chemical composition of precipitation at background level. Atmos Res 95(1):108–113

    CAS  Google Scholar 

  • Das R, Das SN, Misra VN (2005) Chemical composition of rainwater and dustfall at Bhubaneswar in the east coast of India. Atmos Environ 39(32):5908–5916

    CAS  Google Scholar 

  • Deka P, Hoque RR (2014) Diwali fireworks: early signs of impact on PM10 properties of rural Brahmaputra Valley. Aerosol Air Qual Res 14(6):1752–1762

    CAS  Google Scholar 

  • Deka P, Hoque RR (2015) Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmos Environ 108:125–132

    CAS  Google Scholar 

  • Galloway JN (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85(1):15–24

    CAS  Google Scholar 

  • Galloway JN, Savoie DL, Keene WC, Prospero JM (1993) The temporal and spatial variability of scavenging ratios for NSS sulfate, nitrate, methane sulfonate and sodium in the atmosphere over the North Atalantic Ocean. Atmos Environ A Gen Top 27(2):235–250

    Google Scholar 

  • Garaga R, Chakraborty S, Zhang H, Gokhale S, Xue Q, Kota SH (2020) Influence of anthropogenic emissions on wet deposition of pollutants and rainwater acidity in Guwahati, a UNESCO heritage city in Northeast India. Atmos Res 232:104683

    CAS  Google Scholar 

  • GAW (2003) World Meteorological Organization. WMO reactive gases bulletin. Highlights from the Global Atmosphere Watch Programme. https://library.wmo.int/opac/docnum.php

  • Ge BZ, Wang ZF, Xu XB, Tang J, He YJ, Uno I, Ohara T (2011) Impact of the East Asian summer monsoon on long-term variations in the acidity of summer precipitation in Central China. Atmos Chem Phys 11(4):1671–1684

    CAS  Google Scholar 

  • Granat L (1972) On the relation between pH and the chemical composition of atmospheric precipitation. Tellus 24:550–560

    CAS  Google Scholar 

  • Han G, Wu Q, Tang Y (2011) Acid rain and alkalization in southwestern China: chemical and strontium isotope evidence in rainwater from Guiyang. J Atmos Chem 68(2):139–155

    CAS  Google Scholar 

  • Jain M, Kulshrestha UC, Sarkar AK, Parashar DC (2000) Influence of crustal aerosols on wet deposition at urban and rural sites in India. Atmos Environ 34(29–30):5129–5137

    CAS  Google Scholar 

  • Kauffman JB, Cummings DL, Ward DE (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82:519–531

  • Keene WC, Galloway JN, Holden JD Jr (1983) Measurement of weak organic acidity in precipitation from remote areas of the world. J Geophys Res Oceans 88(C9):5122–5130

    CAS  Google Scholar 

  • Keene WC, Pszenny AA, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res Atmos 91(D6):6647–6658

    CAS  Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Griffin, London

  • Keresztesi Á, Nita IA, Birsan MV, Bodor Z, Pernyeszi T, Micheu MM, Szép R (2020) Assessing the variations in the chemical composition of rainwater and air masses using the zonal and meridional index. Atmos Res 237:104846

    CAS  Google Scholar 

  • Keresztesi Á, Nita IA, Birsan MV, Bodor Z, Szép R (2020b) The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians Romania. Environ Sci Pollut Res 27(9):9382–9402

    CAS  Google Scholar 

  • Khare P, Goel A, Patel D, Behari J (2004) Chemical characterization of rainwater at a developing urban habitat of Northern India. Atmos Res 69(3–4):135–145

    CAS  Google Scholar 

  • Khemani LT, Momin GA, Naik MS, Rao PP, Safai PD, Murty ASR (1987) Influence of alkaline particulates on pH of cloud and rain water in India. Atmos Environ (1967) 21(5):1137–1145

  • Kulshrestha MJ, Sekar R, Krishna D, Hazarika AK, Dey NC, Rao PG (2005a) Deposition fluxes of chemical components of fog water at a rural site in north-east India. Tellus B Chem Phys Meteorol 57(5):436–439

    Google Scholar 

  • Kulshrestha MJ, Singh R, Duarah R, Rao PG (2014) Influence of crustal aerosols on wet deposition at a rural site of North-east India. Int J Environ Stud 71(4):510–525

    CAS  Google Scholar 

  • Kulshrestha UC, Granat L, Engardt M, Rodhe H (2005b) Review of precipitation monitoring studies in India—a search for regional patterns. Atmos Environ 39(38):7403–7419

    CAS  Google Scholar 

  • Kulshrestha UC, Jain M, Mandal TK, Gupta PK, Sarkar AK, Parashar DC (1999) Measurements of acid rain over Indian Ocean and surface measurements of atmospheric aerosols at New Delhi during INDOEX pre-campaigns. Curr Sci 76:968–972

  • Kulshrestha UC, Kulshrestha MJ, Sekar R, Sastry GSR, Vairamani M (2003) Chemical characteristics of rainwater at an urban site of south-central India. Atmos Environ 37(21):3019–3026

    CAS  Google Scholar 

  • Kulshrestha UC, Sarkar AK, Srivastava SS, Parashar DC (1995) A study on short-time sampling of individual rain events at New Delhi during monsoon, 1994. Water Air Soil Pollut 85(4):2143–2148

    Google Scholar 

  • Kumar P, Yadav S, Kumar A (2014) Sources and processes governing rainwater chemistry in New Delhi India. Nat Hazards 74(3):2147–2162

    Google Scholar 

  • Kumar R, Rani A, Singh SP, Kumari KM, Srivastava SS (2002) A long term study on chemical composition of rainwater at Dayalbagh, a suburban site of semiarid region. J Atmos Chem 41(3):265–279

    CAS  Google Scholar 

  • Laouali D, Delon C, Adon M, Ndiaye O, Saneh I, Gardrat E, Dias-Alves M, Tagesson T, Fensohlt R, Galy-Lacaux C (2021) Source contributions in precipitation chemistry and analysis of atmospheric nitrogen deposition in a Sahelian dry savanna site in West Africa. Atmos Res 251:105423

    CAS  Google Scholar 

  • Lau WK, Kim KM (2010) Finger printing the impacts of aerosols on long‐term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 3, L16705:1–5

  • Li C, Kang S, Zhang Q, Kaspari S (2007) Major ionic composition of precipitation in the Nam Co region Central Tibetan Plateau. Atmos Res 85(3–4):351–360

    CAS  Google Scholar 

  • Li J, Li R, Cui L, Meng Y, Fu H (2019) Spatial and temporal variation of inorganic ions in rainwater in Sichuan province from 2011 to 2016. Environ Pollut 254:112941

    CAS  Google Scholar 

  • Liu L, Zhang X, Lu X (2016) The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China. Environ Sci Pollut Res 23(7):6363–6375

    CAS  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econom Soc 13:245–259

  • Meng Y, Zhao Y, Li R, Li J, Cui L, Kong L, Fu H (2019) Characterization of inorganic ions in rainwater in the megacity of Shanghai: spatiotemporal variations and source apportionment. Atmos Res 222:12–24

    CAS  Google Scholar 

  • Momin GA, Ali K, Rao PSP, Safai PD, Chate DM, Praveen PS, Rodhe H, Granat L (2005) Study of chemical composition of rainwater at an urban (Pune) and a rural (Sinhagad) location in India. J Geophys Res Atmos 110:D083021–10

  • Moreda-Piñeiro J, Alonso-Rodríguez E, Moscoso-Pérez C, BlancoHeras G, Turnes-Carou I, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2014) Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos Environ 88:30–38

  • Rao PSP, Tiwari S, Matwale JL, Pervez S, Tunved P, Safai PD, Srivastava AK, Bisht DS, Singh S, Hopke PK (2016) Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos Environ 146:90–99

    CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

    Google Scholar 

  • Mouli PC, Mohan SV, Reddy SJ (2005) Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmos Environ 39(6):999–1008

    CAS  Google Scholar 

  • Nadzir MSM, Lin CY, Khan MF, Latif MT, Dominick D, Hamid HHA, Mohamad N, Maulud KNA, Wahab MIA, Kamaludin NF, Lazim MASM (2017) Characterization of rainwater chemical composition after a Southeast Asia haze event: insight of transboundary pollutant transport during the northeast monsoon. Environ Sci Pollut Res 24(18):15278–15290

    CAS  Google Scholar 

  • Nicolás J, Chiari M, Crespo J, Galindo N, Lucarelli F, Nava S, Yubero E (2011) Assessment of potential source regions of PM2. 5 components at a southwestern Mediterranean site. Tellus B Chem Phys Meteorol 63(1):96–106

    Google Scholar 

  • Patil RS, Kumar R, Menon R, Shah MK, Sethi V (2013) Development of particulate matter speciation profiles for major sources in six cities in India. Atmos Res 132:1–11

    Google Scholar 

  • Shukla PS, Sharma M (2010) Neutralization of rainwater acidity at Kanpur India. Tellus B Chem Phys Meteorol 62(3):172–180

    Google Scholar 

  • Rainfall statistics of India, Customized Rainfall Information System (CRIS), Hydromet Division, Indian Meteorological Department (IMD), Ministry of Earth Sciences. https://hydro.imd.gov.in/hydrometweb/(S(t233oarmlsjqsg45sribfyfy))/landing.aspx. Accessed 21 Oct 2021

  • Rastogi N, Sarin MM (2005) Chemical characteristics of individual rain events from a semi-arid region in India: three-year study. Atmos Environ 39(18):3313–3323

    CAS  Google Scholar 

  • Rastogi N, Sarin MM (2007) Chemistry of precipitation events and inter-relationship with ambient aerosols over a semi-arid region in western India. J Atmos Chem 56(2):149–163

    CAS  Google Scholar 

  • Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display system: READY. Environ Model Softw 95:210–228

    Google Scholar 

  • Roy A, Chatterjee A, Tiwari S, Sarkar C, Das SK, Ghosh SK, Raha S (2016) Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmos Res 181:44–53

    CAS  Google Scholar 

  • Safai PD, Rao PSP, Momin GA, Ali K, Chate DM, Praveen PS (2004) Chemical composition of precipitation during 1984–2002 at Pune, India. Atmos Environ 38(12):1705–1714

    CAS  Google Scholar 

  • Salve PR, Gobre T, Lohkare H, Krupadam RJ, Bansiwal A, Ramteke DS, Wate SR (2011) Source identification and variation in the chemical composition of rainwater at coastal and industrial areas of India. J Atmos Chem 68(3):183–198

    CAS  Google Scholar 

  • Satyanarayana J, Reddy LAK, Kulshrestha MJ, Rao RN, Kulshrestha UC (2010) Chemical composition of rain water and influence of airmass trajectories at a rural site in an ecological sensitive area of Western Ghats (India). J Atmos Chem 66(3):101

    CAS  Google Scholar 

  • Seinfeld JH (1986) ES and T books: atmospheric chemistry and physics of air pollution. Environ Sci Technol 20(9):863–863

    CAS  Google Scholar 

  • Sharma A, Saikia A, Khare P, Dutta DK, Baruah BP (2014) The chemical composition of tertiary Indian coal ash and its combustion behaviour—a statistical approach: Part 2. J Earth Syst Sci 123(6):1439–1449

    CAS  Google Scholar 

  • Sigha-Nkamdjou L, Galy-Lacaux C, Pont V, Richard S, Sighomnou D, Lacaux JP (2003) Rainwater chemistry and wet deposition over the equatorial forested ecosystem of Zoétélé (Cameroon). J Atmos Chem 46(2):173–198

    CAS  Google Scholar 

  • Singh S, Kulshrestha UC (2012) Abundance and distribution of gaseous ammonia and particulate ammonium at Delhi India. Biogeosciences 9(12):5023–5029

    CAS  Google Scholar 

  • Soni VK, Kannan PS (2001) Background acidic precipitation trends in India. Proceedings of National Symposium Tropmet 2001. In Proceedings of National Symposium Tropmet, pp 616–621

  • Sonwani S, Kulshrestha UC (2019) PM 10 carbonaceous aerosols and their real-time wet scavenging during monsoon and non-monsoon seasons at Delhi, India. J Atmos Chem 76(3):171–200

    CAS  Google Scholar 

  • Sricharoenvech P, Lai A, Oo TN, Oo MM, Schauer JJ, Oo KL, Aye KK (2020) Source apportionment of coarse particulate matter (PM10) in Yangon, Myanmar. Int J Environ Res Public Health 17(11):4145

    CAS  Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJ, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteor Soc 96(12):2059–2077

    Google Scholar 

  • Szép R, Mateescu E, Nechifor AC, Keresztesi Á (2017) Chemical characteristics and source analysis on ionic composition of rainwater collected in the Carpathians “Cold Pole”, Ciuc basin, Eastern Carpathians Romania. Environ Sci Pollut Res 24(35):27288–27302

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28(8):1273–1285

    CAS  Google Scholar 

  • Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, R Core Team, Vienna. http://www.R-project.org/

  • Tiwari S, Chate DM, Bisht DS, Srivastava MK, Padmanabhamurty B (2012) Rainwater chemistry in the North Western Himalayan Region, India. Atmos Res 104:128–138

    Google Scholar 

  • Tiwari S, Hopke PK, Thimmaiah D, Dumka UC, Srivastava AK, Bisht DS, Rao PS, Chate DM, Srivastava MK, Tripathi SN (2016) Nature and sources of ionic species in precipitation across the Indo-Gangetic Plains, India. Aerosol Air Qual Res 16(4):943–957

    CAS  Google Scholar 

  • Tiwari S, Kulshrestha UC, Padmanabhamurty B (2007) Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India. Atmos Environ 41(27):5595–5604

    CAS  Google Scholar 

  • Tiwari S, Ranade A, Singh D, Pandey AK (2006) Study of chemical species in rainwater at Ballia, a rural environment in eastern Uttar Pradesh, India. Indian J Radio Space Phys 35:35–41

    CAS  Google Scholar 

  • Tiwari S, Srivastava MK, Bisht DS (2008) Chemical composition of rainwater in Panipat, an industrial city in Haryana. Indian J Radio Space Phys 37:443–449

    CAS  Google Scholar 

  • Tripathee L, Kang S, Huang J, Sillanpää M, Sharma CM, Lüthi ZL, Guo J, Paudyal R (2014) Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal. Environ Sci Pollut Res 21(4):2677–2687

    CAS  Google Scholar 

  • Tun SNL, Aung TH, Mon AS, Kyaw PH, Siriwong W, Robson M, Htut T (2018) Assessment of ambient dust pollution status at selected point sources (residential and commercial) of Mingaladon area, Yangon region, Myanmar. J Health Res 32(1):60–68

    Google Scholar 

  • Valappil NKM, Viswanathan PM, Hamza V (2020) Chemical characteristics of rainwater in the tropical rainforest region in northwestern Borneo. Environ Sci Pollut Res 27(29):36994–37010

    CAS  Google Scholar 

  • Viana M, López JM, Querol X, Alastuey A, García-Gacio D, Blanco-Heras G, López-Mahía P, Piñeiro-Iglesias M, Sanz MJ, Sanz F, Chi X (2008) Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmos Environ 42(8):1941–1957

    CAS  Google Scholar 

  • Wang C, Cheng K, Ren C, Liu H, Sun J, Reis S, Yin S, Xu J, Gu B (2021) An empirical model to estimate ammonia emission from cropland fertilization in China. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.117982

    Article  Google Scholar 

  • Wang L, Liu Z, Sun Y, Ji D, Wang Y (2015) Long-range transport and regional sources of PM2. 5 in Beijing based on long-term observations from 2005 to 2010. Atmos Res 157:37–48

    CAS  Google Scholar 

  • Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24(8):938–939

    Google Scholar 

  • Wilke CO (2018) Ggridges: Ridgeline plots in ‘ggplot2’. R package version 0.5, 1

  • Xiao HW, Xie LH, Long AM, Ye F, Pan YP, Li DN, Long ZH, Chen L, Xiao HY, Liu CQ (2015) Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea. Atmos Environ 109:70–78

    CAS  Google Scholar 

  • Xing J, Song J, Yuan H, Li X, Li N, Duan L, Qu B, Wang Q, Kang X (2017) Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China. Atmos Res 190:10–20

    CAS  Google Scholar 

  • Yang F, Tan J, Shi ZB, Cai Y, He K, Ma Y, Duan F, Okuda T, Tanaka S, Tie X (2012) Five-year record of atmospheric precipitation chemistry in urban Beijing, China. Atmos Chem Phys 12:2025–2035

  • Zeng J, Han G (2020) Rainwater chemistry reveals air pollution in a karst forest: temporal variations, source apportionment, and implications for the forest. Atmosphere 11(12):1315

    CAS  Google Scholar 

  • Zeng J, Yue FJ, Li SL, Wang ZJ, Wu Q, Qin CQ, Yan ZL (2020) Determining rainwater chemistry to reveal alkaline rain trend in Southwest China: evidence from a frequent-rainy karst area with extensive agricultural production. Environ Pollut 266:115166

    CAS  Google Scholar 

  • Zhang M, Wang S, Wu F, Yuan X, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84(4):311–322

    CAS  Google Scholar 

  • Zhang Q, Yan R, Fan J, Yu S, Yang W, Li P, Wang S, Chen B, Liu W, Zhang X (2015) A heavy haze episode in Shanghai in December of 2013: characteristics, origins and implications. Aerosol Air Qual Res 15(5):1881–1893

    Google Scholar 

  • Zhao M, Li L, Liu Z, Chen B, Huang J, Cai J, Deng S (2013) Chemical composition and sources of rainwater collected at a semi-rural site in Ya’an, Southwestern China. Atmos Clim Sci 3:486–496

Download references

Acknowledgements

The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.ready.noaa.gov) used in this publication. The authors also like to acknowledge the free availability of software, Meteoinfo and Trajstat, used in this publication.

Funding

The Ministry of Earth Sciences (MoES), Government of India offered a research project (Grant No. MoES/16/16/10-RDEAS), during 2011–2015, to Raza R. Hoque for a study like this; however, MoES does not have any role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The respective contributions are as per the following: MSA: data curation, formal analysis, investigation, methodology, software, original draft, PB: data curation, formal analysis, investigation, methodology, software, original draft, SS: methodology, validation, review and editing, RRH: conceptualization, funding acquisition, methodology, project administration; supervision, writing—review and editing.

Corresponding author

Correspondence to Raza R. Hoque.

Ethics declarations

Ethics approval and consent to participate

There are no human subjects or animal used in this study.

Consent for publication

Authors agreed for the publication of the work without any condition.

Competing interests

The authors declare no competing interests

Additional information

Responsible Editor: Gerhard Lammel

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1843 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.S., Bhuyan, P., Sarkar, S. et al. Seven-year study of monsoonal rainwater chemistry over the mid-Brahmaputra plain, India: assessment of trends and source regions of soluble ions. Environ Sci Pollut Res 29, 25276–25295 (2022). https://doi.org/10.1007/s11356-021-17385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17385-7

Keywords

Navigation