Alvarez-Taboada, F., Paredes, C., & Julián-Pelaz, J. (2017). Mapping of the invasive species Hakea sericea using unmanned aerial vehicle (UAV) and WorldView-2 imagery and an object-oriented approach. Remote Sensing, 9(9), 913. https://doi.org/10.3390/rs9090913.
Article
Google Scholar
Bakker, J. P., Kuijper, D. P., & Stahl, J. (2009). Community ecology and management of salt marshes. In H. A. Verhoef & P. J. Morin (Eds.), Community ecology processes, models, and applications (pp. 131–147). Oxford: Oxford University Press.
Chapter
Google Scholar
Bakker, J. P., Schrama, M., Esselink, P., Daniels, P., Bhola, N., Nolte, S., de Vries, Y., Veeneklaas, R. M., & Stock, M. (2020). Long-term effects of sheep grazing in various densities on marsh properties and vegetation dynamics in two different salt-marsh zones. Estuaries and Coasts, 43, 298–315.
CAS
Article
Google Scholar
Boon, M. A., Greenfield, R., & Tesfamichael, S. (2016). Unmanned aerial vehicle (UAV) photogrammetry produces accurate high-resolution orthophotos, point clouds and surface models for mapping wetlands. South African Journal of Geomatics, 5(2), 186–200. https://doi.org/10.4314/sajg.v5i2.7.
Article
Google Scholar
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Article
Google Scholar
Chabot, D., Dillon, C., Ahmed, O., & Shemrock, A. (2016). Object-based analysis of UAS imagery to map emergent and submerged invasive aquatic vegetation: a case study. Journal of Unmanned Vehicle Systems, 5(1), 27–33. https://doi.org/10.1139/juvs-2016-0009.
Article
Google Scholar
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104.
Article
Google Scholar
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., & Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015.
Article
Google Scholar
De Luca, G., Silva, J. M. N., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., & Modica, G. (2019). Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo ToolBox. Remote Sensing, 11(10), 1238. https://doi.org/10.3390/rs11101238.
Article
Google Scholar
Friese, J., Temming, A., & Dänhardt, A. (2018). Grazing management affects fish diets in a Wadden Sea salt marsh. Estuarine, Coastal and Shelf Science, 212, 341–352. https://doi.org/10.1016/j.ecss.2018.07.014.
Article
Google Scholar
Gonçalves, J., Pôças, I., Marcos, B., Mücher, C. A., & Honrado, J. P. (2019). SegOptim—a new R package for optimizing object-based image analyses of high-spatial resolution remotely-sensed data. International Journal of Applied Earth Observation and Geoinformation, 76, 218–230. https://doi.org/10.1016/j.jag.2018.11.011.
Article
Google Scholar
Hill, D. J., Tarasoff, C., Whitworth, G. E., Baron, J., Bradshaw, J. L., & Church, J. S. (2017). Utility of unmanned aerial vehicles for mapping invasive plant species: a case study on yellow flag iris (Iris pseudacorus L.). International Journal of Remote Sensing, 38(8–10), 2083–2105. https://doi.org/10.1080/01431161.2016.1264030.
Article
Google Scholar
Huang, X., Zhang, L., & Li, P. (2007). Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery. IEEE Geoscience and Remote Sensing Letters, 4(2), 260–264. https://doi.org/10.1109/LGRS.2006.890540.
Article
Google Scholar
UNEP-WCMC, & IUCN. (2020). Protected planet: the world database on protected areas (WDPA) [Online], [version 10/2019]. Cambridge: UNEP-WCMC and IUCN Available at: www.protectedplanet.net.
Kattenborn, T., Eichel, J., & Fassnacht, F. E. (2019). Convolutional neural networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific Reports, 9(1), 17656. https://doi.org/10.1038/s41598-019-53797-9.
CAS
Article
Google Scholar
Kucharczyk, M., Hay, G. J., Ghaffarian, S., & Hugenholtz, C. H. (2020). Geographic object-based image analysis: a primer and future directions. Remote Sensing, 12(12), 2012. https://doi.org/10.3390/rs12122012.
Article
Google Scholar
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.
Book
Google Scholar
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310.
CAS
Article
Google Scholar
Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep learning for remote sensing image classification: a survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1264. https://doi.org/10.1002/widm.1264.
Article
Google Scholar
Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., et al. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4), 641. https://doi.org/10.3390/rs10040641.
Article
Google Scholar
Mandema, F. S., Tinbergen, J. M., Ens, B. J., Koffijberg, K., Dijkema, K. S., & Bakker, J. P. (2015). Moderate livestock grazing of salt, and brackish marshes benefits breeding birds along the mainland coast of the Wadden Sea. The Wilson Journal of Ornithology, 127(3), 467–476.
Article
Google Scholar
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.
Article
Google Scholar
McInerney, D., & Kempeneers, P. (2015). Orfeo Toolbox. In D. McInerney & P. Kempeneers (Eds.), Open Source Geospatial Tools (pp. S. 199–S. 217). Springer International Publishing. https://doi.org/10.1007/978-3-319-01824-9_13.
Michel, J., Youssefi, D., & Grizonnet, M. (2015). Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 952–964. https://doi.org/10.1109/TGRS.2014.2330857.
Nolte, S., Wanner, A., Stock, M., & Jensen, K. (2019). Elymus athericus encroachment in Wadden Sea salt marshes is driven by surface elevation change. Applied Vegetation Science, 22(3), 454–464. https://doi.org/10.1111/avsc.12443.
Article
Google Scholar
Oldeland, J., et al. (2017). The potential of UAS derived image features for discriminating savannah tree species. In R. Díaz-Delgado et al. (Eds.), The roles of remote sensing in nature conservation (pp. 183–201). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-64332-8_10.
Chapter
Google Scholar
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015.
Article
Google Scholar
Petersen, J., Bas, K. & Stock, M. (2014). TMAP-typology of coastal vegetation in the Wadden Sea area. Version 1.0. www.waddensea-secretariat.org, Wilhelmshaven Germany. Accessed 09 Jan 2020.
Pétillon, J., Ysnel, F., Canard, A., & Lefeuvre, J.-C. (2005). Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: responses of spider populations. Biological Conservation, 126(1), 103–117. https://doi.org/10.1016/j.biocon.2005.05.003.
Article
Google Scholar
Pirotti, F., Sunar, F., & Piragnolo, M. (2016). Benchmark of machine learning methods for classification of a Sentinel-2 image. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B7, 335–340. https://doi.org/10.5194/isprsarchives-XLI-B7-335-2016.
Article
Google Scholar
Poona, N. K., & Ismail, R. (2013). Discriminating the occurrence of pitch canker fungus in Pinus radiata trees using QuickBird imagery and artificial neural networks. Southern Forests: a Journal of Forest Science, 75(1), 29–40. https://doi.org/10.2989/20702620.2012.748255.
Article
Google Scholar
QGIS Development Team 2019. QGIS geographic information system. Open Source Geospatial Foundation. www.qgis.org
R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing. www.r-project.org
Google Scholar
Revermann, R. & Luther-Mosebach, J. (2019) Monitoring der Salzwiesen auf den Halligen Hooge, Gröde und Nordstrandischmoor. Jahresbericht 2019. Unpublished report for Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR). 108 pp.
Rickert, C., Fichtner, A., Van Klink, R., & Bakker, J. P. (2012). α-and β-diversity in moth communities in salt marshes is driven by grazing management. Biological Conservation, 146(1), 24–31. https://doi.org/10.1016/j.biocon.2011.11.024.
Article
Google Scholar
Rominger, K., & Meyer, S. E. (2019). Application of UAV-based methodology for census of an endangered plant species in a fragile habitat. Remote Sensing, 11(6), 719. https://doi.org/10.3390/rs11060719.
Article
Google Scholar
Samiappan, S., Turnage, G., Hathcock, L., Casagrande, L., Stinson, P., & Moorhead, R. (2017a). Using unmanned aerial vehicles for high-resolution remote sensing to map invasive Phragmites australis in coastal wetlands. International Journal of Remote Sensing, 38(8–10), 2199–2217. https://doi.org/10.1080/01431161.2016.1239288.
Article
Google Scholar
Samiappan, S., Turnage, G., Hathcock, L. A., & Moorhead, R. (2017b). Mapping of invasive phragmites (common reed) in Gulf of Mexico coastal wetlands using multispectral imagery and small unmanned aerial systems. International Journal of Remote Sensing, 38(8–10), 2861–2882. https://doi.org/10.1080/01431161.2016.1271480.
Article
Google Scholar
Silveira, E. M. O., Silva, S. H. G., Acerbi-Junior, F. W., Carvalho, M. C., Carvalho, L. M. T., Scolforo, J. R. S., & Wulder, M. A. (2019). Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment. International Journal of Applied Earth Observation and Geoinformation, 78, 175–188. https://doi.org/10.1016/j.jag.2019.02.004.
Article
Google Scholar
Sosa-Herrera, J. A., Vallejo-Pérez, M. R., Álvarez-Jarquín, N., Cid-García, N. M., & López-Araujo, D. J. (2019). Geographic object-based analysis of airborne multispectral images for health assessment of Capsicum annuum L. crops. Sensors, 19(21), 4817. https://doi.org/10.3390/s19214817.
Article
Google Scholar
Tay, J. Y. L., Erfmeier, A., & Kalwij, J. M. (2018). Reaching new heights: can drones replace current methods to study plant population dynamics? Plant Ecology, 219(10), 1139–1150. https://doi.org/10.1007/s11258-018-0865-8.
Article
Google Scholar
Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12(6), 1001. https://doi.org/10.3390/rs12061001.
Article
Google Scholar
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.
Article
Google Scholar
Turner, D. J., Malenovský, Z., Lucieer, A., Turnbull, J. D., & Robinson, S. A. (2019). Optimizing spectral and spatial resolutions of unmanned aerial system imaging sensors for monitoring Antarctic vegetation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(10), 3813–3825. https://doi.org/10.1109/JSTARS.2019.2938544.
Article
Google Scholar
Valéry, L., Bouchard, V., & Lefeuvre, J.-C. (2004). Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands, 24(2), 268–276. https://doi.org/10.1672/0277-5212(2004)024[0268:IOTINS]2.0.CO;2.
Article
Google Scholar
Van Klink, R., Nolte, S., Mandema, F. S., Lagendijk, D. G., WallisDeVries, M. F., Bakker, J. P., et al. (2016). Effects of grazing management on biodiversity across trophic levels–the importance of livestock species and stocking density in salt marshes. Agriculture, Ecosystems & Environment, 235, 329–339. https://doi.org/10.1016/j.agee.2016.11.001.
Article
Google Scholar
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. New York: Springer-Verlag. https://doi.org/10.1007/978-0-387-21706-2.
Book
Google Scholar
Wan, H., Wang, Q., Jiang, D., Fu, J., Yang, Y., & Liu, X. (2014). Monitoring the invasion of Spartina alterniflora using very high resolution unmanned aerial vehicle imagery in Beihai, Guangxi (China). The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/638296.
Article
Google Scholar
Wanner, A., Suchrow, S., Kiehl, K., Meyer, W., Pohlmann, N., Stock, M., & Jensen, K. (2014). Scale matters: Impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes. Agriculture, Ecosystems & Environment, 182, 69–79. https://doi.org/10.1016/j.agee.2013.08.014.
Article
Google Scholar
Zou, H., & Hastie, T. (2017). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x@10.1111/(ISSN)1467-9868.TOP_SERIES_B_RESEARCH.