Skip to main content

Advertisement

Log in

Likelihood inference for pollutant loading under type I censoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Exposure to toxic contaminants in the environment harms human and animal health and disturbs the integrity and function of the impacted ecosystem. The impact could be local, regional, and global. The concentration of a toxic substance below or above detection limits or thresholds in environmental samples is frequently recorded as non-detect. We discuss inferences based on exact and modified likelihood methods for the location-scale family with values below the detection limit, and as a special case for the normal distribution with a comparison between the methods. We demonstrate the procedure using Niagara River monitoring data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 10
Fig. 9
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aitchison, J., & Brown, J. A. (1957). The lognormal distribution with special reference to its uses in economics. Press: Cambridge Univ.

    Google Scholar 

  • Beauchamp, J. J., & Olson, J. S. (1973). Corrections for bias in regression estimates after logarithmic transformation. Ecology, 54(6), 1403–1407.

    Article  Google Scholar 

  • Cohen, Jr A. C. (1950). Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples. The Annals of Mathematical Statistics, pp 557–569.

  • El-Shaarawi, A. (1989). Inferences about the mean from censored water quality data. Water Resources Research, 25(4), 685–690.

    Article  CAS  Google Scholar 

  • El-Shaarawi, A., & Murthy, C. (1976). Probability distribution of concentrations measured in the wake of a continuous point source in coastal currents. Journal of Physical Oceanography, 6(5), 735–740.

    Article  Google Scholar 

  • Esterby, S., & El-Shaarawi, A. (1984). Coliform concentrations in Lake Erie—1966 to 1970. Hydrobiologia, 111(2), 133–146.

    Article  Google Scholar 

  • Gilliom, R. J., & Helsel, D. R. (1986). Estimation of distributional parameters for censored trace level water quality data: 1.estimation techniques. Water Resources Research, 22(2), 135–146.

    Article  Google Scholar 

  • Gupta, A. (1952). Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika, 39(3/4), 260–273.

    Article  Google Scholar 

  • Harter, H. L. (1970). Order statistics and their use in testing and estimation: estimates based on order statistics of samples from various populations (Vol. 2). Aerospace research laboratories.

  • Harter, H. L., & Moore, A. H. (1966). Iterative maximum-likelihood estimation of the parameters of normal population from singly and doubly censored samples. Biometrika, 53(1–2), 205–213.

    CAS  Google Scholar 

  • Hashimoto, L., & Trussell, R. (1983). Evaluating water quality data near the detection limit (pp. 5–9). In: Proc. Amer. Water Works Assoc. Advanced Technology Conf. Las Vegas. June.

    Google Scholar 

  • Helsel, D. R., & Gilliom, R. J. (1986). Estimation of distributional parameters for censored trace level water quality data: 2. verification and applications. Water Resources Research, 22(2), 147–155.

    Article  Google Scholar 

  • Hill, B., Klawunn, P. (2009). Niagara river upstream/downstream monitoring program report: 2001{2002 to 2004{2005. En-vironment Canada (EC).

  • Lawless, J. F. (2011). Statistical models and methods for lifetime data (Vol. 362). John Wiley & Sons.

  • Quilbè, R., Rousseau, A. N., Duchemin, M., Poulin, A., Gangbazo, G., & Villeneuve, J. P. (2006). Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the beaurivage river (Quèbec, Canada). Journal of Hydrology, 326(1–4), 295–310.

    Article  Google Scholar 

  • R Core Team. (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/.

  • Tiku, M. (1967). Estimating the mean and standard deviation from a censored normal sample. Biometrika, 54(1–2), 155–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the time and effort devoted by the editors and the anonymous reviewers to improve the quality of the work. We thank two anonymous reviewers for the provided helpful comments and suggestions on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel H. El-Shaarawi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Calculations for grouped censoring

EM algorithm

Let x1, x2, ...., xnbe a censored sample from a location-scale distribution where all {xi : d1 < xi < d2are censored; d1 and d2 are fixed detection limits. Assume that there are no non-detected (censored) values and r = n − no uncensored values. Let us define δi as follows

$$ {\delta}_i=\left\{\begin{array}{l}0\kern0.48em :{d}_1<{x}_i{d}_2\\ {}1\kern0.6em : otherwise,\end{array}\right. $$

in this case, the likelihood function will take the form

$$ L\left(\mu, \sigma \right)=\prod \limits_{i=1}^n\left(\frac{1}{0}f\left({z}_i\right)\right){\delta}_i{\left({\int}_{\xi_1}^{\xi_2}f(z) dz\right)}^{1-{\delta}_i} $$

where f(t) and F(t) are the probability density function and the cumulative distribution function for the standard location-scale parameter (free of μ and σ),\( {\xi}_j=\frac{d_j-\mu }{\sigma },j=1,2\; and\;{z}_i=\frac{x_i-\mu }{\sigma } \). Hence, the log-likelihood function is given by

$$ {\displaystyle \begin{array}{l}\ell \left(\mu, \sigma \right)=-r\;\log \sigma +\sum \limits_{i=1}^n\left[{\delta}_i\;\log\;f\left({z}_i\right)+\left(1-{\delta}_i\right)\;\log {\int}_{\xi_1}^{\xi_2}f(z) dz\right]\\ {}\kern1.92em =-r\;\log \sigma +\sum \limits_{i=1}^n{\delta}_i\;\log\;f\left({z}_i\right)+{n}_o\;\log \left(F\left({\xi}_2\right)-F\left({\xi}_1\right)\right)\end{array}} $$

Let \( C\left({\xi}_1,{\xi}_2\right)=\log {\int}_{\xi_1}^{\xi_2}f(z) dz; \) the censored part in the log-likelihood Eq. (4). Then we have the following

$$ {\displaystyle \begin{array}{l}\frac{\partial }{\partial \mu }C\left({\xi}_1,{\xi}_2\right)=\frac{1}{\int_{\xi_1}^{\xi_2}f(z) dz}{\int}_{\xi_1}^{\xi_2}\frac{\partial f}{\partial \mu } dz\\ {}\kern5.5em =\frac{1}{\int_{\xi_1}^{\xi_2}f(z) dz}{\int}_{\xi_1}^{\xi_2}\frac{\partial \log f(z)}{\partial \mu }f(z) dz\\ {}\begin{array}{l}\kern5.5em =E\left[\frac{\partial \log f(z)}{\partial \mu}\left|{\xi}_1<z<\right.{\xi}_2\right]\\ {}\kern5.5em =-\frac{1}{\sigma }E\left[\frac{\partial \log f(z)}{\partial z}\left|{\xi}_1<z<\right.{\xi}_2\right]\\ {}\kern5.5em =-\frac{1}{\sigma}\frac{f\left({\xi}_2\right)-f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}\end{array}\end{array}} $$
(25)
$$ {\displaystyle \begin{array}{l}\frac{\partial^2}{\partial {\mu}^2}C\left({\xi}_1,{\xi}_2\right)=\frac{\partial }{\partial \mu}\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \mu } dz\\ {}\kern6em =\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial }{\partial \mu}\left[\frac{\partial \log f(z)}{\partial \mu }f(z)\right] dz-{\left(\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \mu } dz\right)}^2\\ {}\begin{array}{l}\kern6em =E\left[\left.\frac{\partial^2\log f(z)}{\partial {\mu}^2}\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.{\left(\frac{\partial \log f(z)}{\partial \mu}\right)}^2\right|{\xi}_1<z<{\xi}_2\right]-{\left(E\left[\left.\frac{\partial \log f(z)}{\partial \mu}\right|{\xi}_1<z<{\xi}_2\right]\right)}^2\\ {}\kern6em =\frac{1}{\sigma^2}\left(E\left[\left.\frac{\partial^2\log f(z)}{\partial {z}^2}\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.\left(\frac{\partial \log f(z)}{\partial z}\right)2\right|{\xi}_1<z<{\xi}_2\right]-{\left(E\left[\left.\frac{\partial \log f(z)}{\partial z}\right|{\xi}_1<z<{\xi}_2\right]\right)}^2\right)\\ {}\kern6em =\frac{1}{\sigma^2}\left(\frac{\frac{\partial f\left({\xi}_2\right)}{\partial {\xi}_2}-\frac{\partial f\left({\xi}_1\right)}{\partial {\xi}_1}}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}-{\left(\frac{f\left({\xi}_2\right)-f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}\right)}^2\right)\end{array}\end{array}} $$
(26)
$$ {\displaystyle \begin{array}{l}\frac{\partial }{\partial \sigma }C\left({\xi}_1,{\xi}_2\right)=\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{d}_2\\ {}{d}_1\end{array}\frac{\partial }{\partial \sigma}\left[\frac{1}{\sigma }f\left(\frac{x-\mu }{\sigma}\right)\right] dx\\ {}\kern5.5em =\frac{1}{\sigma }+\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial \log f(z)}{\partial \sigma }f(z) dz\\ {}\begin{array}{l}\kern5.5em =-\frac{1}{\sigma }+E\left[\left.\frac{\partial \log f(z)}{\partial \sigma}\right|{\xi}_1<z<{\xi}_2\right]\\ {}\kern5.5em =-\frac{1}{\sigma}\left(1+E\left[\left.\frac{z\partial \log f(z)}{\partial z}\right|{\xi}_1<z<{\xi}_2\right]\right)\\ {}\kern5.5em =-\frac{1}{\sigma}\frac{\xi_2f\left({\xi}_2\right)-{\xi}_1f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}\end{array}\end{array}} $$
(27)
$$ {\displaystyle \begin{array}{l}\frac{\partial^2}{\partial {\sigma}^2}C\left({\xi}_1,{\xi}_2\right)=\frac{1}{\sigma^2}+\frac{\partial }{\partial \sigma}\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{d}^2\\ {}{d}^1\end{array}\frac{1}{\sigma}\frac{\partial f\left(\frac{x-\mu }{\sigma}\right)}{\partial \sigma } dx\\ {}\kern6em =\frac{1}{\sigma^2}+\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{d}_2\\ {}{d}_1\end{array}\frac{\partial }{\partial \sigma}\left[\frac{1}{\sigma}\frac{\partial \log f\left(\frac{x-\mu }{\sigma}\right)}{\partial \sigma }f\left(\frac{x-\mu }{\sigma}\right)\right] dx-{\left(\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \sigma } dz\right)}^2\\ {}\begin{array}{l}\kern6em =\frac{1}{\sigma^2}-\frac{1}{\sigma }E\left[\left.\frac{\partial \log f(z)}{\partial \sigma}\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.\frac{\partial \log f(z)}{\partial {\sigma}^2}\right|{\xi}_1<z<{\xi}_2\right]\\ {}\kern6em +E\left[\left.{\left(\frac{\partial \log f(z)}{\partial \sigma}\right)}^2\right|{\xi}_1<z<{\xi}_2\right]-{\left(E\left[\left.\frac{\partial \log f(z)}{\partial \sigma}\right|{\xi}_1<z<{\xi}_2\right]\right)}^2\\ {}\begin{array}{l}\kern6em =\frac{2}{\sigma^2}\left(1+E\left[\left.\frac{z\partial \log f(z)}{\partial z}\right|{\xi}_1<z{\xi}_2\right]\right)\\ {}\kern6em +\frac{1}{\sigma^2}\left(E\left[\left.{z}^2\frac{\partial^2\log f(z)}{\partial {z}^2}\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.{\left(z\frac{\partial \log f(z)}{\partial z}\right)}^2\right|{\xi}_1<z<{\xi}_2\right]-{\left(E\left[\left.z\frac{\partial \log f(z)}{\partial z}\right|{\xi}_1<z<{\xi}_2\right]\right)}^2\right)\\ {}\kern6em =\frac{2}{\sigma^2}\frac{\xi_2f\left({\xi}_2\right)-{\xi}_1f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}+\frac{1}{\sigma^2}\left(\frac{\xi \begin{array}{c}2\\ {}2\end{array}\frac{\partial f\left({\xi}_2\right)}{\partial {\xi}_2}-\xi \begin{array}{c}2\\ {}1\end{array}\frac{\partial f\left({\xi}_1\right)}{\partial {\xi}_1}}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}-{\left(\frac{\xi_2f\left({\xi}_2\right)-{\xi}_1f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}\right)}^2\right)\end{array}\end{array}\end{array}} $$
(28)
$$ {\displaystyle \begin{array}{l}\frac{\partial^2}{\partial \mu \partial \sigma }C\left({\xi}_1,{\xi}_2\right)=\frac{\partial }{\partial \mu}\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \sigma } dz\\ {}\begin{array}{l}\kern6.75em =\frac{1}{\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial }{\partial \mu}\left[\frac{\partial \log f(z)}{\partial \sigma }f(z)\right] dz-\frac{1}{{\left(\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}f(z) dz\right)}^2}\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \mu } dz\int \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}\frac{\partial f(z)}{\partial \sigma } dz\\ {}\kern6.75em =E\left[\left.\frac{\partial \log f(z)}{\partial \sigma}\frac{\partial \log f(z)}{\partial \mu}\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.\frac{\partial^2\log f(z)}{\partial \sigma \partial \mu}\right|{\xi}_1<z<{\xi}_2\right]\\ {}\kern6.75em -E\left[\left.\frac{\partial \log f(z)}{\partial \sigma}\right|{\xi}_1<z<{\xi}_2\right]E\left[\left.\frac{\partial \log f(z)}{\partial \mu}\right|{\xi}_1<z<{\xi}_2\right]\end{array}\\ {}\begin{array}{l}\kern6.75em =\frac{1}{\sigma^2}\left(E\left[\left.z{\left(\frac{\partial \log f(z)}{\partial z}\right)}^2\right|{\xi}_1<z<{\xi}_2\right]+E\left[\left.z\frac{\partial^2\log f(z)}{\partial {z}^2}\right|{\xi}_1<z<{\xi}_2\right]-E\left[\left.z\frac{\partial \log f(z)}{\partial z}\right|{\xi}_1<z<{\xi}_2\right]E\left[\left.\frac{\partial \log f(z)}{\partial z}\right|{\xi}_1<z<{\xi}_2\right]\right)\\ {}\kern6.75em =\frac{1}{\sigma^2}\left[\frac{f\left({\xi}_2\right)-f\left({\xi}_1\right)}{F\left({\xi}_2\right)-F\left({\xi}_1\right)}+\frac{\left(F\left({\xi}_2\right)-F\left({\xi}_1\right)\right)\left({\xi}_2\frac{\partial f\left({\xi}_2\right)}{\partial {\xi}_2}-{\xi}_1\frac{\partial f\left({\xi}_1\right)}{\partial {\xi}_1}\right)-\left(f\left({\xi}_2\right)-f\left({\xi}_1\right)\right)\left({\xi}_2f\left({\xi}_2\right)-{\xi}_1f\left({\xi}_1\right)\right)}{{\left(F\left({\xi}_2\right)-F\left({\xi}_1\right)\right)}^2}\right]\end{array}\end{array}} $$
(29)

Modified likelihood

The censored term in the log-likelihood equation may be modified using the Taylor series using the quadratic approximation.

We may approximate \( C\left({\xi}_1,{\xi}_2\right)=\log \int {\displaystyle \begin{array}{c}{\xi}_2\\ {}{\xi}_1\end{array}}f(z) dz \) as the following

$$ {\displaystyle \begin{array}{c}C\left({\xi}_1,{\xi}_2\right)\approx C\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)+{C}_{\xi_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\left({\xi}_1-{\hat{\xi}}_1\right)+{C}_{\xi_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\left({\xi}_2-{\hat{\xi}}_2\right)\\ {}+\frac{1}{2!}\left[{C}_{\xi_1{\xi}_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right){\left({\xi}_1-{\hat{\xi}}_1\right)}^2+2{C}_{\xi_1{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\left({\xi}_1-{\hat{\xi}}_1\right)\left({\xi}_2-{\hat{\xi}}_2\right)+{C}_{\xi_2{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right){\left({\xi}_2-{\hat{\xi}}_2\right)}^2\right]\end{array}} $$

which can be written as

$$ C\left({\xi}_1,{\xi}_2\right)\approx C+ $$
$$ {\displaystyle \begin{array}{c}C=C\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_1{C}_{\xi_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_2{C}_{\xi_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)+\frac{1}{2}\hat{\xi}\begin{array}{c}2\\ {}1\end{array}{C}_{\xi_1{\xi}_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)+\frac{1}{2}\hat{\xi}\begin{array}{c}2\\ {}2\end{array}{C}_{\xi_2{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)+{\hat{\xi}}_1{\hat{\xi}}_2{C}_{\xi_1{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\\ {}{\leftthreetimes}_1={C}_{\xi_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_1{C}_{\xi_1{\xi}_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_2{C}_{\xi_1{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\\ {}\begin{array}{c}{\leftthreetimes}_2={C}_{\xi_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_2{C}_{\xi_2{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)-{\hat{\xi}}_1{C}_{\xi_1{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\\ {}{\leftthreetimes}_3=\frac{1}{2}{C}_{\xi_1{\xi}_1}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\\ {}\begin{array}{c}{\leftthreetimes}_4=\frac{1}{2}{C}_{\xi_2{\xi}_2}\left({\hat{\xi}}_1,{\hat{\xi}}_2\right)\\ {}{\leftthreetimes}_5={C}_{\xi_1{\xi}_2}\left({\hat{\xi}}_1{\hat{\xi}}_2\right)\end{array}\end{array}\end{array}} $$

where \( {\hat{\xi}}_1 \) and \( {\hat{\xi}}_2 \) may be estimated using the proportion of censored values as \( {\hat{\xi}}_1={F}^{-1}\left(\frac{n_2-{n}_0}{n}\right),{\hat{\xi}}_2={F}^{-1}\left(\frac{n_2}{n}\right),{n}_2=\sum {\displaystyle \begin{array}{c}n\\ {}i=1\end{array}}{\delta}_{2i}, \)

$$ {\delta}_{2i}=\left\{\begin{array}{c}1:{z}_i<{\xi}_2\\ {}0:\mathrm{otherwise}\end{array}\right. $$

and

$$ \int {\displaystyle \begin{array}{c}{\xi}_2\\ {}{\hat{\xi}}_1\end{array}}f(z) dz=\frac{n_o}{n} $$

So we can write the log-likelihood function as

$$ \ell \left(\mu, \sigma \right)=-r\log \sigma +\sum \limits_{i=1}^n{\delta}_i\log f\left({z}_i\right)+{n}_o\left(C+{\leftthreetimes}_1{\xi}_1+{\leftthreetimes}_2{\xi}_2+{\leftthreetimes}_3\xi \begin{array}{c}2\\ {}1\end{array}+{\leftthreetimes}_4\xi \begin{array}{c}2\\ {}2\end{array}+{\leftthreetimes}_5{\xi}_1{\xi}_2\right) $$
(30)

And so the first and the second derivatives with respect to μ and σ are:

$$ \frac{\partial \ell }{\partial \mu }=-\frac{1}{\sigma}\left[\sum \limits_{i=1}^n{\delta}_i\frac{\partial \log f\left({z}_i\right)}{\partial {z}_i}+{n}_o\left(\left({\leftthreetimes}_1+{\leftthreetimes}_2\right)+\left(2{\leftthreetimes}_3+{\leftthreetimes}_5\right){\xi}_1+\left(2{\leftthreetimes}_4+{\leftthreetimes}_5\right){\xi}_2\right)\right] $$
(31)
$$ \frac{\partial \ell }{\partial \sigma }=-\frac{r}{\sigma }-\frac{1}{\sigma}\left[\sum \limits_{i=1}^n{\delta}_i{z}_i\frac{\partial^2\log f\left({z}_i\right)}{\partial {z}_i}+{n}_o\left({\leftthreetimes}_1{\xi}_1+{\leftthreetimes}_2{\xi}_2+2{\leftthreetimes}_3\xi \begin{array}{c}2\\ {}1\end{array}+2{\leftthreetimes}_4\xi \begin{array}{c}2\\ {}2\end{array}+2{\leftthreetimes}_5{\xi}_1{\xi}_2\right)\right] $$
(32)
$$ \frac{\partial^2\ell }{\partial {\mu}^2}=\frac{1}{\sigma^2}\left[\sum \limits_{i=1}^n{\delta}_i\frac{\partial^2\log f\left({z}_i\right)}{\partial z\begin{array}{c}2\\ {}i\end{array}}+2{n}_o\left({\leftthreetimes}_3+{\leftthreetimes}_4+{\leftthreetimes}_5\right)\right] $$
(33)
$$ \frac{\vartheta^2\ell }{\vartheta {\sigma}^2}=\frac{r}{\sigma^2}+\frac{1}{\sigma^2}\left[\sum \limits_{i=1}^n{\delta}_i{z}_i\frac{\partial \log f\left({z}_i\right)}{\partial {z}_i}+\sum \limits_{i=1}^n{\delta}_iz\begin{array}{c}2\\ {}i\end{array}\frac{\partial \log f\left({z}_i\right)}{\partial z\begin{array}{c}2\\ {}i\end{array}}\right]+\frac{2}{\sigma^2}\left[{n}_o\left({\leftthreetimes}_1{\xi}_1+{\leftthreetimes}_2{\xi}_2+3{\leftthreetimes}_3\xi \begin{array}{c}2\\ {}1\end{array}+3{\leftthreetimes}_4\xi \begin{array}{c}2\\ {}2\end{array}+3{\leftthreetimes}_5{\xi}_1{\xi}_2\right)\right] $$
(34)
$$ \frac{\vartheta^2\ell }{\vartheta \sigma \vartheta \mu}=\frac{1}{\sigma^2}\left[\sum \limits_{i=1}^n{\delta}_i\frac{\partial \log f\left({z}_i\right)}{\partial {z}_i}+\sum \limits_{i=1}^n{\delta}_i{z}_i\frac{\partial^2\log f\left({z}_i\right)}{\partial z\begin{array}{c}2\\ {}i\end{array}}\right]+\frac{1}{\sigma^2}\left[{\mathrm{n}}_o\left(\left({\leftthreetimes}_1+{\leftthreetimes}_2\right)+\left(4{\leftthreetimes}_3+2{\leftthreetimes}_5\right){\xi}_1+\left(4{\leftthreetimes}_4+2{\leftthreetimes}_5\right){\xi}_2\right)\right] $$
(35)

Appendix 2. R function

An R function is written to estimate the mean and the standard deviation using the modified likelihood method for a vector of normal data Y, d the detection limit, and all values below d are censored.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, H.M., El-Shaarawi, A.H. Likelihood inference for pollutant loading under type I censoring. Environ Monit Assess 192, 225 (2020). https://doi.org/10.1007/s10661-020-8178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8178-5

Keywords

Navigation