Skip to main content

Advertisement

Log in

Groundwater vulnerability and trace element dispersion in the Quaternary aquifers along middle Upper Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Association of trace metal concentrations in water is problematic; however, its information is scarce and sometimes contradicted. This work presents variations in dissolved major constituents and trace element concentrations along the quaternary aquifers located in middle Upper Egypt (Minia and Assiut governorates). A total of 205 groundwater samples from these aquifers were collected. Auxiliary parameters (pH, alkalinity, and conductivity), major cations (Ca2+, Mg2+, Na+, and K+), dominant anions (HCO3, SO42−, Cl, and NO3), and trace element (B, Fe, Cu, Mn, Ni, Pb, Cd, and Cr) concentrations were measured in all samples. Univariate (correlation coefficient and scatter matrix) analysis was employed combined with multivariate (principal coordinates analysis) analysis to identify the chemical characteristics of groundwater that are responsible for generating most of the variability within the dataset. Also, hierarchical cluster analysis was applied to classify the geochemical origin of the groundwater constituents. The results indicate that the groundwater pollution is mainly due to water–rock interactions, including aquifer matrix dissolution, redox reaction of trace metals, input from wastewater, and agricultural fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abou Heleika, M. M., & Niesner, E. (2009). Configuration of the limestone aquifers in the central part of Egypt using electrical measurements. Hydrogeology Journal, 17, 433–446.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). New York: American public health association (APHA), American Water Works Association (AWWA), and water pollution control federation (WPCF).

  • Averyt, K. B., Kim, J. P., & Hunter, K. A. (2004). Effect of pH on measurement of strong copper binding ligands in lakes. Limnology and Oceanography, 49, 20–27.

    Article  CAS  Google Scholar 

  • Battistel, M., Hurwitz, S., Evans, W. C., & Barbieri, M. (2016). The chemistry and isotopic composition of waters in the lowenthalpy geothermal system of Cimino-Vico Volcanic District, Italy. Journal of Volcanology and Geothermal Research, 328, 222–229.

    Article  CAS  Google Scholar 

  • Bodrud-Doza, M. d., Islam, T., Ahmed, F., Das, S., Saha, N., & Rahman, M. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in Central Bangladesh. Water Science, 30, 19–40.

    Article  Google Scholar 

  • Bu, H., Wang, W., Song, X., & Zhang, Q. (2015). Characteristics and source apportionment of dissolved trace elements in the Jinshui River of the South Qinling Mts., China. Environmental Science and Pollution Research, 22, 14248–14257.

    Article  CAS  Google Scholar 

  • Chetelat, B., & Gaillardet, J. (2005). Boron isotopes in the Seine River, France: A probe of anthropogenic contamination. Environmental Science and Technology, 39, 2486–2493.

    Article  CAS  Google Scholar 

  • Dawoud, M. A., El Arabi, N. E., Khater, A. R., & Wonderen, J. v. (2006). Impact of rehabilitation of Assiut barrage, Nile River, on groundwater rise in urban areas. Journal of African Earth Sciences, 45, 395–407.

    Article  Google Scholar 

  • Decree of Health Ministry (No.458), (2007). Egyptian standards for drinking water and domestic uses (in Arabic Language).

  • El-Aassar, M., Hussien, R. A., & Ghoubachi, S. Y. (2016). Groundwater quality and vulnerability assessment in the new reclamation areas, Assuit governorate, West Nile River, Egypt. Journal of American Science, 12(11).

  • Emmenegger, L., King, D. W., Sigg, L., & Sulzberger, B. (1998). Oxidation kinetics of Fe (II) in a eutrophic Swiss lake. Environmental Science and Technology, 32, 2990–2996.

  • FAO. (2007). Coping with water scarcity: Challenge of the twenty-first century. UN-Water.

  • Goyer, R. A. (1993). Lead toxicity: Current concerns. Environmental Health Perspectives, 100, 177–187.

    Article  CAS  Google Scholar 

  • Gurumurthy, G. P., Balakrishna, K., Tripti, M., Audry, S., Riotte, J., Braun, J. J., & Shankar, H. N. U. (2014). Geochemical behaviour of dissolved trace elements in a monsoon-dominated tropical river basin, southwestern India. Environmental Science and Pollution Research, 21, 5098–5120.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9pp.

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply paper, 1473, 19–32.

    Google Scholar 

  • Holland, H. D. (1978). The chemistry of the atmosphere and oceans (p. 351). New York: John Wiley and Sons.

    Google Scholar 

  • Kamel, A. K. (2012). Hydrochemical evaluation of the water sources in Minia district, Egypt. M.Sc. of Geology Minia, Faculty of Science, Minia University, Egypt, 120 p.

  • Ledesma-Ruiz, R., Pastén-Zapata, E., Parra, R., Harter, T., & Mahlknecht, J. (2015). Investigation of the geochemical evolution of groundwater under agricultural land: A case study in northeastern Mexico. Journal of Hydrology, 521, 410–423.

    Article  CAS  Google Scholar 

  • Li, P., He, S., Yang, N., & Xiang, G. (2018). Groundwater quality assessment for domestic and agricultural purposes in Yan′an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environmental Earth Sciences, 77, 775.

    Article  CAS  Google Scholar 

  • Li, P., He, X., & Guo, W. (2019). Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan′an City on the Loess Plateau of northwest China. Human and Ecological Risk Assessment, 25(1–2), 11–31. https://doi.org/10.1080/10807039.2018.1553612.

    Article  CAS  Google Scholar 

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323.

    Article  Google Scholar 

  • Mollema, P. N., & Antonellini, M. (2016). Water and (bio)chemical cycling in gravel pit lakes: A review and outlook. Earth-Science Reviews, 159, 247–270.

    Article  CAS  Google Scholar 

  • Mollema, P. N., Antonellini, M., Dinelli, E., Greggio, N., & Stuyfzand, P. J. (2015a). The influence of flow-through saline gravel pit lakes on the hydrologic budget and hydrochemistry of a Mediterranean drainage basin. Limnology and Oceanography, 60, 2009–2025.

    Article  CAS  Google Scholar 

  • Mollema, P. N., Stuyfzand, P. J., Juhasz-Holterman, M. H. A., Van Diepenbeek, P. M. J. A., & Antonellini, M. (2015b). Metal accumulation in an artificially recharged gravel pit lake used for drinking water supply. Journal of Geochemical Exploration, 150, 35–51.

    Article  CAS  Google Scholar 

  • Mora, A., Mahlknecht, J., Baquero, J. C., Laraque, A., Alfonso, J. A., Pisapia, D., & Balza, L. (2017). Dynamics of dissolved major (Na, K, Ca, Mg, and Si) and trace (Al, Fe, Mn, Zn, Cu, and Cr) elements along the lower Orinoco River. Hydrological Processes, 31, 597–611.

    Article  CAS  Google Scholar 

  • Needleman, H. L. (1990). The future challenge of lead toxicity. Environmental Health Perspectives, 89, 85–89.

    Article  CAS  Google Scholar 

  • Needleman, H. L., Schell, A., Bellinger, D., Leviton, A., & Allred, E. N. (1990). The long-term effects of exposure to low-doses of lead in childhood—An 11-year follow-up report. The New England Journal of Medicine, 322, 83–88.

    Article  CAS  Google Scholar 

  • Nigro, A., Sappa, G., & Barbieri, M. (2017). Application of boron and tritium isotope for tracing landfill contamination in groundwater. Journal of Geochemical Exploration, 172, 101–108.

    Article  CAS  Google Scholar 

  • Omo-Irabor, O. O., Olobaniyi, S. B., Oduyemi, K., & Akunna, J. (2008). Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Physics and Chemistry of the Earth, Parts A/B/C, 33, 666–673.

    Article  Google Scholar 

  • Oude Essink, G. H. P., van Baaren, E. S., & de Louw, P. G. B. (2010). Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resources Research, 46, W00F04.

    Article  Google Scholar 

  • Pape, P. L., Ayrault, S., & Quantin, C. (2012). Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). Journal of Hydrology, 472(473), 99–110.

    Article  CAS  Google Scholar 

  • Pinheiro, J. P., Mota, A. M., Simões Gonçalves, M. L. S., van der Weijde, M., & van Leeuwen, H. P. (1996). Comparison between polarographic and potentiometric speciation for cadmium/humic acid systems. Journal of Electroanalytical Chemistry, 410, 61–68.

    Article  Google Scholar 

  • Pullin, M. J., & Cabaniss, S. E. (2003). The effects of pH, ionic strength, and iron–fulvic acid interactions on the kinetics of nonphotochemical iron transformations. I. Iron (II) oxidation and iron(III) colloid formation. Geochimica et Cosmochimica Acta, 67, 4067–4077.

    Article  CAS  Google Scholar 

  • RIGW (Research Institute of Groundwater). (1992). Hydrogeological map of Egypt, scale 1:100,000 (2nd ed.). Map Sheet of: El-Minia.

    Google Scholar 

  • Sanad, E.Y. (2010). Geophysical and hydrogeological studies for evaluation the groundwater potentiality in the reclaimed area, West Minia District, Egypt, department. Of geology, Faculty of Science, Minia University., Egypt, 178 p.

  • Santschi, P. H., Lenhart, J. J., & Honeyman, B. D. (1997). Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. Marine Chemistry, 58, 99–125.

    Article  CAS  Google Scholar 

  • Schröder, T. J., Hiemstra, T., Vink, J. P., & van der Zee, S. E. (2005). Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse. Environmental Science and Technology, 39, 7176–7184.

    Article  CAS  Google Scholar 

  • Shiklomanov, I. (1993). World freshwater resources. In P. H. Gleick (Ed.), Water in crisis: A guide to the World's fresh water resources. New York: Oxford University press.

    Google Scholar 

  • Soto-Varela, F., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2014). Identifying environmental and geochemical variables governing metal concentrations in a stream draining headwaters in NW Spain. Applied Geochemistry, 44, 61–68.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53, 1509–1528.

    Article  CAS  Google Scholar 

  • Taillefert, M., Lienemann, C. P., Gaillard, J. F., & Perret, D. (2000). Speciation, reactivity, and cycling of Fe and Pb in a meromictic lake. Geochimica et Cosmochimica Acta, 64, 169–183.

    Article  CAS  Google Scholar 

  • Taillefert, M., Macgregor, B. J., Gaillard, J.-F., Lienemann, C.-P., Perret, D., & Stahl, D. A. (2002). Evidence for a dynamic cycle between Mn and Co in the water column of a stratified lake. Environmental Science and Technology, 36, 468–476.

    Article  CAS  Google Scholar 

  • Tariq, S. R., Shah, M. H., Shaheen, N., Jaffar, M., & Khalique, A. (2008). Statistical source identification of metals in groundwater exposed to industrial contamination. Environmental Monitoring and Assessment, 138, 159–165.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belzile, N., DeVitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387–404.

    Article  CAS  Google Scholar 

  • Varol, M. (2013). Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, 93, 954–962.

    Article  CAS  Google Scholar 

  • Waleed, S. S., Abd El-Monaim, A. E., Mansour, M. M., & El-Karamany, M. F. (2009). Evaluation of groundwater aquifer in the area between El-Qusiya and Manfalut using vertical electric soundings (Ves) technique. Journal of Engineering Sciences, Assiut University, 37, 1193–1207.

    Google Scholar 

  • Weng, N., & Wang, W.-X. (2014). Variations of trace metals in two estuarine environments with contrasting pollution histories. Science of the Total Environment, 485–486, 604–614.

    Article  CAS  Google Scholar 

  • WHO (2011). World Health Organization: Guidelines for Drinking-Water Quality, 4th ed.

  • Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: A case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7, 3973–3982.

    Article  CAS  Google Scholar 

  • Wu, J., Li, P., Wang, D., Ren, X., & Wei, M. (2019). Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2019.1594156.

  • Zaki, R., El Bakry, A., El Shemi, A., & Fanous, F. A. (2001). Petrography and geochemistry of the Eocene limestone units, east El Minia district, north Upper Egypt. In 5 th international conference on geochemistry, Alexandria University, Egypt, II (pp. 113–148).

    Google Scholar 

  • Zhang, Y., Charlet, L., & Schindler, P. W. (1992). Adsorption of protons, Fe(II) and Al(III) on lepidocrocite (γ-FeOOH). Colloids and Surfaces, 63, 259–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Many thanks are due to Dr. Julian O’Dea Director (retired), Chemical Review, Australian Department of Health for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moustafa Gamal Snousy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snousy, M.G., Morsi, M.S., Elewa, A.M. et al. Groundwater vulnerability and trace element dispersion in the Quaternary aquifers along middle Upper Egypt. Environ Monit Assess 192, 174 (2020). https://doi.org/10.1007/s10661-020-8109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8109-5

Keywords

Navigation