Skip to main content

Advertisement

Log in

Alarming groundwater depletion in the Delhi Metropolitan Region: a long-term assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater in Delhi Metropolitan Region (DMR) is suffering from multiple catastrophes, viz., asymptotic increases in groundwater withdrawal, reduced recharge due to erratic rainfall, and variable soil type. In this study, we examined long-term trends in groundwater levels across the DMR from 1996 to 2018. Station level data collected by the Central Groundwater Board for 258 stations at the seasonal scale were visualized and interpreted using geospatial analysis. The spatial patterns of the trends in groundwater levels revealed increasing depths of groundwater levels, except the Yamuna River floodplains. The main cause for the decline is related to the rapid growth in population accompanied with high-density impervious urban land uses, leading to lower levels of recharge vs unlimited withdrawal of groundwater for daily needs. In addition, the local geology in the form of clayey soils in northwest DMR also contributed to the lower levels of recharge. The results of the analysis enabled us to establish the trend and delineate the zones of differential recharge. Furthermore, the level of contaminants were analyzed at the district level for fluorides and nitrates. The presence of fluoride contamination was mostly concentrated in the northwestern district, while the nitrate exceedance was more widespread. These findings will help in achieving the 6th Sustainable Development Goal (SDG) of United Nations by 2030 as well as goals identified in Delhi’s master plan of 2041.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Arthington, A. H., Arthington, S. E., Bunn, N. L., Poff, & Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications, 16(4), 1311–1318.

    Article  Google Scholar 

  • Bao, C., & Fang, C. L. (2007). Water resources constraint force on urbanization in water deficient regions: a case study of the Hexiorridor, arid area of NW China. Ecological Economics, 62(3–4), 508–517.

    Article  Google Scholar 

  • Barber, C., Otto, C. J., & Bates, L. E. (1996). Evaluation of the relationship between landuse change and groundwater quality in a water supply catchment using GIS technology: the Gwelup wellfield Western Australia. Journal of Environmental Geology, 4(1), 6–19.

    Google Scholar 

  • Bierkens, M. F., & Wada, Y. (2019). Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 14(6), 063002.

    Article  Google Scholar 

  • Briscoe, J. (2005). “India’s water economy: bracing for a turbulent future.” Report No. 34750-IN, viii–xi World Bank.

  • Cao, Y., & Roy, S. S. (2018). Spatial patterns of seasonal level trends of groundwater in India during 2002-2016. Weather, 75, 123–128. https://doi.org/10.1002/wea.3370.

    Article  Google Scholar 

  • CGWB. (2016). Aquifer mapping and groundwater management plan of NCT Delhi. New Delhi: Central Groundwater Board, State Unit Office.

    Google Scholar 

  • Christides, A., Mavrakis, A., Mitilineou, A. (2011). A case of intense seawater intrusion to aquifer of the Thriasio Plain, Greece. Proceedings of the 12th International Conference on Environmental Science and Technology (12th ICEST). Vol B: 152-159.

  • Datta, P. S., Deb, D. L., & Tyagi, S. K. (1997). Assessment of groundwater contamination from fertilizers in the Delhi area based on 180, N03 and K+ composition. Journal of Contaminant Hydrology, 27(3–4), 249–262.

  • Gleick, P. H., Burns, W. C. G., Chalecki, E. L., Cohen, M., Cushing, K. K., Mann, A., Reyes, R., Wolff, G. H., & Wong, A. K. (2002). The world’s water, 2002–2003. The biennial report on freshwater resources. Washington: Island Press.

    Google Scholar 

  • Gregory, J. H., Dukes, M. D., Jones, P. H., & Miller, G. L. (2006). Effect of urban soil compaction on infiltration rate. Journal of Soil and Water Conservation, 61(3), 117–124.

    Google Scholar 

  • Hamel, P., Daly, E., & Fletcher, T. D. (2013). Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review. Journal of Hydrology, 485, 201–211.

    Article  Google Scholar 

  • Hay-Man Ng, H., Ge, L., Li, X., Abidin, H. Z., Andreas, H., & Zhang, K. (2012). Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation, 18, 232–242.

    Article  Google Scholar 

  • Hermides, D., Kyriazis, D., Makri, P., & Ermidou, A. (2020). Geochemical evolution of the Thriassion Plain groundwaters, Attica, Greece. Environmental Monitoring and Assessment, 192, 561. https://doi.org/10.1007/s10661-020-08491-z.

    Article  CAS  Google Scholar 

  • Houria, B., Mahdi, K., & Zohra, T. F. (2020). Hydrochemical characterisation of groundwater quality: Merdja Plain (Tebessa Town, Algeria). Civil Engineering Journal, 6(2), 318–325.

    Article  Google Scholar 

  • Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review. Journal of Environmental Management, 92(6), 1438–1448.

    Article  Google Scholar 

  • Jain, M., Dawa, D., Mehta, R., Dimri, A. P., & Pandit, M. K. (2016). Monitoring land use change and its drivers in Delhi, India using multi-temporal satellite data. Modeling Earth Systems and Environment, 2(1), 19.

    Article  CAS  Google Scholar 

  • Kaiser, H. (2017). How India is serving the growing Delhi slum population. https://borgenproject.org/growing-delhi-slum-population/.

  • Karambela, A., 1997. Geomorphological and environmental study of Thriassion Plain PhD, Faculty of Geology and Geoenvironment, NKUA pp 289.

  • Kerr, R. A. (2009). Northern India’s groundwater is going, going, going…. Science, 325(5942), 798.

    Article  Google Scholar 

  • Khan, M. A., & Mahorana, P. C. (2002). Use of remote sensing and geographic information system in delineation and characterization of groundwater prospects zones. Indian Journal of Remote Sensing, 30, 131–141.

    Article  Google Scholar 

  • Kumar, S., & Bhandary, T. (2015). Comparative study of Landsat and Aster data by morphometric analysis. Civil Engineering Journal, 1(2), 21–25.

    Article  Google Scholar 

  • Kumar, R., Singh, R. D., & Sharma, K. D. (2005). Water resources of India. Current Science, 89, 794–811.

    Google Scholar 

  • Lloyd, J. W., & Heathcote, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater (p. 296). Oxford: Clarendon press.

    Google Scholar 

  • Makri, P. (2008). Investigating the pollution from BTEX in the groundwater of Thriassion Plain, Ph.D. University of Athens, pp260.

  • Malik, N., Bookhagen, B., & Mucha, P. J. (2016). Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes. Geophysical Research Letters, 43(4), 1710–1717.

    Article  Google Scholar 

  • Malik, K., Kumar, D., & Perissin, D. (2019). Assessment of subsidence in Delhi NCR due to groundwater depletion using TerraSAR-X and persistent scatterers interferometry. The Imaging Science Journal, 67(1), 1–7.

    Article  Google Scholar 

  • Mall, R. K., Gupta, A., Singh, R., Singh, R. S., & Rathore, L. S. (2006). Water resources and climate change: an Indian perspective. Current Science, 90, 1610–1626.

    Google Scholar 

  • Mallick, J., Singh, C. K., Al-Wadi, H., Ahmed, M., Rahman, A., Shashtri, S., & Mukherjee, S. (2015). Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 29(3), 395–418.

    Article  Google Scholar 

  • Mapani, B. S. (2005). Groundwater and urbanization, risk and mitigation: the case for the city of Windhoek, Namibia. Physics and Chemistry of the Earth, 30, 706–711.

    Article  Google Scholar 

  • McDonald, R. I., Green, P., Balk, D., Fekete, B. M., Revengaa, C., Todd, M., & Montgomery, M. (2011). Urban growth, climate change, and freshwater availability. Proceedings of the National Academy of Sciences, 108(15), 6312–6317.

    Article  CAS  Google Scholar 

  • Meyer, S. (2005). Analysis of base flow trends in urban streams, northeastern Illinois, USA. Hydrogeology Journal, 13(5), 871–885.

    Article  Google Scholar 

  • Mueller, G. D., & Thompson, A. M. (2009). The ability of urban residential lawns to disconnect impervious area from municipal sewer systems1. Journal of the American Water Resources Association, 45(5), 1116–1126.

    Article  Google Scholar 

  • National Geophysical Research Institute, NGRI (2019). Delhi at epicentre of global groundwater crisis. http://timesofindia.indiatimes.com/articleshow/68131980.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst.

  • NRSA. (1995). Report on area statistics of land use/land cover generated using remote sensing techniques, India (pp. 9–23). Balanagar, Hyderabad: Project Report, National Remote Sensing Agency.

    Google Scholar 

  • Ortega-Guerrero, A., Rudolph, D. L., & Cherry, J. A. (1999). Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35, 3327–3341.

    Article  Google Scholar 

  • Rai, S. C., & Kumari, P. (2012). Assessment of groundwater contamination from land use/cover change in rural-urban fringe of National Capital Territory of Delhi (India). Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi-seria Geografie, 58(1), 31–46.

    Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature., 460(7258), 999–1002.

    Article  CAS  Google Scholar 

  • Rouabhia, A., Baali, F., & Fehdi, C. (2009). Impact of agricultural activity and lithology on groundwater quality in the Merdja Area, Tebessa, Algeria. Arabian Journal of Geosciences, 3(3), 307–318. https://doi.org/10.1007/s12517-009-0087-4.

    Article  CAS  Google Scholar 

  • Roy, A. H., Dybas, A. L., Fritz, K. M., & Lubbers, H. R. (2009). Urbanization affects the extent and hydrologic permanence of headwater streams in a midwestern US metropolitan area. Journal of the North American Benthological Society, 28(4), 911–928.

    Article  Google Scholar 

  • Sen Roy, S., & Singh, R. B. (2015). Role of local level relative humidity on the development of urban heat island across the Delhi Metropolitan Region. In R. B. Singh (Ed.), Urban Development Challenges, Risks and Resilience in Asian Mega Cities (pp. 99–118). Tokyo: Springer.

    Google Scholar 

  • Shiklomanov, I. A., and J. C. Rodda (Eds.). (2003). World water resources at the beginning of the 21st century. International hydrology series: 435. Cambridge University Press Cambridge.

  • Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal, 2(4), 263–275.

    Article  Google Scholar 

  • Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai, India. Global Environmental Change, 23(1), 229–239.

    Article  Google Scholar 

  • Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformatics., 5, 29–39.

    Article  Google Scholar 

  • The Times of India. 2018. Groundwater in parts of Delhi has arsenic, fluorides: Report. http://timesofindia.indiatimes.com/articleshow/64514905.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst.

  • Wentz, E. A., Nelson, D., Rahman, A., Stefanov, W. L., & Sen Roy, S. (2008). Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing, 29, 4405–4427. https://doi.org/10.1080/01431160801905497.r.

    Article  Google Scholar 

  • WHO. (2017). Guidelines for Drinking Water. Fourth Edition. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf;jsessionid=70446CDF436D0AC97FB0AC0EC9E0DDB7?sequence=1.

Download references

Acknowledgments

The authors are also grateful to groundwater levels data provided by the Central Ground Water Board (CGWB), India, and satellite data provided by the USGS.

Funding

This research was partially funded by Fulbright Nehru Academic and Professional Excellence Award–Research 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouraseni Sen Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.S., Rahman, A., Ahmed, S. et al. Alarming groundwater depletion in the Delhi Metropolitan Region: a long-term assessment. Environ Monit Assess 192, 620 (2020). https://doi.org/10.1007/s10661-020-08585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08585-8

Keywords

Navigation