Skip to main content

Advertisement

Log in

Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria

تأثير النشاط الزراعي والمكونات الصخرية على نوعية المياه الجوفية لسهل المرجة المحاذي لمدينة تبسة ، الجزائر

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This work presents results of the hydrogeological and hydrochemical studies on groundwater samples from the alluvial aquifer of Merdja in Tébessa, located in the Western part of this town. Its groundwater resources are used mainly for crop irrigation in an agriculture dominated area. Hydrochemical and water quality data obtained through a sampling period (December 2008) and analysis program indicate that nitrate pollution can be a serious problem affecting groundwater due to the use of nitrogen (N) fertilizers in agriculture. The concentration of nitrate in groundwater ranged from 19 to 281 mg/l. Considerable seasonal fluctuations in groundwater quality were observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the wadi El Kebir flow regime. The chemical composition of the water is not only influenced by agricultural practices, but also by interaction with the alluvial sediments. The dissolution of evaporites accounts for part of the Na+, K+, Cl, SO 2−4 , Mg2+, and Ca2+, but other processes, such as calcite precipitation and dedolomitization, also contribute to groundwater chemistry.

ملخص

يستعرض هذا العمل نتائج الدراسات الهيدروجيولوجية و الهيدروكيميائية لعينات من المياه الجوفية للطبقة الغرينية لسهل المرجة المحاذي لمدينة تبسة من الجهة الغربية, أين تستخدم المياه الجوفية بشكل رئيسي لسقي المساحات الزراعية.

نوعية المياه و معطيات التحليل الهيدروكيميائي المتحصل عليها خلال شهر ديسمبر 2008 أظهرت قابلية للتلوث بالنترات التي قد تشكل مشكلة خطيرة لهذه المياه الجوفية بسبب الاستخدام المفرط للأسمدة الكيميائية في الزراعة.

يتراوح تركيز النترات في المياه الجوفية بين 19 إلى 281 ملغم/لتر, وترتبط بطبيعة الموسم الزراعي و كمية التساقط الفصلي إلى جانب المياه المستعملة التي تجري خلال وادي الكبير الذي يقطع طوليا سهل المرجة. يرتبط التركيب الكيميائي للمياه أيضا بتفاعلها مع ترسبات الطمي و انحلال التراكيب الملحية الجبسية التي ترفع تركيز العناصر الكيميائية المعدنية و تساهم بذلك و بشكل ملحوظ في التركيبة الكيميائية للمياه الجوفية بسهل المرجة.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appelo CAJ (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources Res 30:2793–2805

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1993) Groundwater, geochemistry and pollution. Balkema, Rotterdam

    Google Scholar 

  • Appelo CAJ, Postma D (1999) Variable dispersivity in a column experiment containing MnO and FeOOH-coated sand. J Contam Hydrol 40(1999):95–106

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, p 649p

    Google Scholar 

  • Appelo CAJ, Willemsen A, Ikekman HE, Griffioen J (1990) Geochemical calculations and observations on salt water intrusions. II. Validation of a geochemical model with column experiments. J Hydrol 120:225–250

    Article  Google Scholar 

  • Baali F, Rouabhia A, Kherici N, Djabri L, Bouchaou L, Hani A (2007) Underground water quality and contamination risk. The case of the basin of Chéria. N.E. Algeria. Estudios Geol 63(1):127–133 ISSN: 0367–0449

    Google Scholar 

  • Blés JL, Fleury JJ (1970) Carte géologique de l’Algérie au 1/50000: feuille n°178, Morsott, avec notice explicative détaillée. Service de cartes Géologique et Sonatrach, Division d’hydrocarbure. Direction des explorations, Alger, Algérie

  • Calmbach L (1997) AquaChem Computer Code Version 3.7.42, Waterloo, Ontario, Canada. N2L 3L3

  • Debye P, Hückel E (1923) The theory of electrolytes. I. Lowering of freezing point and related phenomena. Physikalische Zeitschrift 24:185–206

    Google Scholar 

  • Djabri L (1987) Contribution to the hydrogeological study of the subsidence plain of Tebessa NE Algerie. Attempt of modelling. Doctorate Thesis, University of Franche Comté. France

  • Elrashidi MA, Larsen S (1978) The effect of phosphate addition on the solubility of phosphate in soil. Plant Soil 50:585–594

    Article  Google Scholar 

  • Fehdi Ch, Rouabhia A, Baali F, Boudoukha A (2008) The hydrogeochemical characterization of Morsott-El Aouinet aquifer, Northeastern Algeria. Environ Geol. doi:10.1007/s00254-008-1667-4.

  • Gillham RW, Cherry AJ (1978) Field evidence of denitrification in shallow groundwater flow system. Water Pollut Res Can 13:53–71

    Google Scholar 

  • Hamilton PA, Helsel DR (1995) Effects of agriculture on groundwater quality in five regions of the United States. Ground Water 33:217–226

    Article  Google Scholar 

  • Kpomblekou AK, Killorn R (1996) Nitrification of ammonium nitrogen in soils treated with XDE-474. Soil Sci Soc Am J 60:1482–1489

    Article  Google Scholar 

  • Kraft GJ, Sities W, Mechenich DJ (1999) Impacts of irrigated vegetable agriculture on a humid north-central U.S. sand plain aquifer. Ground Water 37:572–580

    Article  Google Scholar 

  • Mcdonald AE, Grant BR, Plaxton WC (2001) Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. J Plant Nutr 24:1505–1519

    Article  Google Scholar 

  • McNeely RN, Neimanis VP, Dwyer L (1979) Water quality sourcebook a guide to water quality parameters: inland waters directorate. Water Quality Branch, Ottawa 88p

    Google Scholar 

  • Nash H, McCall GJH (1995) Groundwater quality, 17th Special Report. Chapman & Hall, London, pp 109–122

    Google Scholar 

  • Parkhurst DL, Apello CAJ (1999) User guide to PHREEQC (version 2)-a computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical Calculations: U.S. Geological Survey Water Resources Investigations Report: 99–4259, 312 p

  • Patrick WH Jr, Khalid RA (1974) Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53–55

    Article  Google Scholar 

  • Plummer LN, Jones BF, Trusedall AH (1976) WATEQ-a Fortran IV version of WATEQA computer program for calculating chemical equilibrium of natural waters. U.S Geol-Surv. Water Res, Washington DC, vol 76, pp 13–61 (Revised 1978, 1984)

  • Plummer L, Presemon E, Parkhurst D (1991) An interactive code (NETPATH) for modelling Net geochimical reactions along a flow Path. USGS Water Investigation Rep no 91-4078

  • Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045

    Article  Google Scholar 

  • Rouabhia A, Baali F, Kherici N, Djabri L (2004) Vulnérabilité et risque de pollution des eaux souterraines de la nappe des sables miocènes de la plaine d’El MA EL Abiod (Algérie). Rev Sécheresse 15:347–352

    Google Scholar 

  • Rouabhia A, Fehdi Ch, Baali F, Djabri L, Rouabhi R (2008) Impact of human activities on quality and geochemistry of groundwater in the Merdja area, Tebessa, Alegria. Environ Geol. doi:10.1007/s00254-008-1225-0.

  • Rouabhia A, Baali F, Fehdi Ch, Kherici N, Djabri L (2008) Hydrochemical and isotopic investigation of a sandstone aquifer groundwater in a semi arid region, El Ma El Abiod, Algeria. Environ Geol doi:10.1007/s00254-008-1451-5.

  • Starr RC, Gillham RW (1993) Dinitrification and organic carbon availability in two aquifers. Ground Water 6:934–947

    Article  Google Scholar 

  • Vila JM (1980) Algerian mountain chain and the Algerian–Tunisian confines [La chaine alpine de l’Algérie orientale et des confins Algéro-Tunisiens]. Doctorate Thesis in Natural Sciences. University Pierre et Marie Curie, Paris 6

  • WHO (2006) World Health Organization. Guidelines for drinking water quality, 3rd edn, incorporating first addendum. www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html

Download references

Acknowledgments

This work has been realized through the framework of CNPRU project G02920070001 under the thematic: Systèmes d’irrigation et risques de pollution saline et azoté. Construction d’un indicateur de risque et application sur les plaines de Tébessa, (El Ma El Abiod, La Merdja et Chéria) Algérie. We would like to thank Profs. Mudry J. and Vergotten G. (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Rouabhia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouabhia, A., Baali, F. & Fehdi, C. Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria. Arab J Geosci 3, 307–318 (2010). https://doi.org/10.1007/s12517-009-0087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0087-4

Keywords

Navigation