Skip to main content

Advertisement

Log in

Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Jharia Coalfield (JCF) is one of the oldest coalfields in the eastern part of India and falls under critically polluted areas as per CPCB/MoEFCC Notification. Therefore, a study of air pollution and its management is the demand of the day. This study had been undertaken to know the current status of JCF concerning air quality. Ambient air quality monitoring with reference to particulate matter (PM10 and PM2.5), SO2, NOx and trace elements had been conducted in the coal mining areas of JCF. The study area was divided into two groups, mainly fire and non-fire for the sampling of air. Principal component analysis (PCA) identified coal mine fire as a major source of air pollution in the mining areas of JCF. Air quality index (AQI) was calculated which revealed that the air quality index of coal mine fire-affected areas was nearly 1.5 times higher than that of the non-mine fire areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abulude, F. O., Adeyeye, E. I., & Asaolu, S. S. (2003). Assessment of some heavy metals in mushroom samples from Ondo State, Nigeria. International Journal of Environmental Studies, 60(6), 535–536. https://doi.org/10.1080/0020723032000130070.

    Article  Google Scholar 

  • Afridi, H. I., Kazi, T. G., Kazi, N., Kandhro, G. A., Baig, J. A., Shah, A. Q., Khan, S., Kolachi, N. F., Wadhwa, S. K., Shah, F., Jamali, M. K., & Arain, M. B. (2011). Evaluation of cadmium, chromium, nickel, and zinc in biological samples of psoriasis patients living in Pakistani cement factory area. Biological Trace Element Research, 142(3), 284–301.

    Article  CAS  Google Scholar 

  • ASTDR (Agency for Toxic Substances and disease Registry) (1993). Toxicological profile for lead. Update. Prepared by Clement International Corporation under Contract No. 205-88-0608 for ASTDR. U.S. Public Health Service, Atlanta, GA.

  • Äyräs, M., & Kashulina, G. (2000). Regional patterns of element contents in the organic horizon of podzols in the central part of the Barents region (Finland, Norway and Russia) with special reference to heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur as indicators of airborne pollution. Journal of Geochemical Exploration, 68(1–2), 127–144.

    Article  Google Scholar 

  • Baldauf, R. W. (2001). Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environmental Monitoring and Assessment, 66(1), 63–76. https://doi.org/10.1023/A:1026428214799.

    Article  CAS  Google Scholar 

  • Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), 95–105. https://doi.org/10.1016/S0269-7491(02)00337-8.

    Article  CAS  Google Scholar 

  • Basha, A. M., Yasovardhan, N., Satyanarayana, S. V., Reddy, G. V. S., & Kumar, A. V. (2014). Baseline survey of trace metals in ambient PM 10 at Tummalapalle uranium mining site. Atmospheric Pollution Research, 5(4), 591–600. https://doi.org/10.5094/APR.2014.068.

    Article  CAS  Google Scholar 

  • Bharat Coking Coalfield Limited (BCCL) (1991). Mine fires in the Jharia coalfield, Bharat Coking Coal Limited, Project andPlanning Division, Dhanbad, India, pp 1–17.

  • Bhuyan, P. K., Samantray, P., & Rout, S. P. (2010). Ambient air quality status in Choudwar area of Cuttack District. International journal of environmental sciences, 1(3), 343–356.

  • Birmili, W., Allen, A. G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology, 40(4), 1144–1153. https://doi.org/10.1021/es0486925.

    Article  CAS  Google Scholar 

  • Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360(9341), 1233–1242. 10.1016/S0140-6736(02)11274-8.

  • Charron, A., & Harrison, R. M. (2005). Fine (PM2. 5) and coarse (PM2. 5-10) particulate matter on a heavily trafficked London highway: sources and processes. Environmental Science & Technology, 39(20), 7768–7776. https://doi.org/10.1021/es050462i.

    Article  CAS  Google Scholar 

  • Cheng, H., & Hu, Y. (2010). Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environmental Pollution, 158(5), 1134–1146. https://doi.org/10.1016/j.envpol.2009.12.028.

    Article  CAS  Google Scholar 

  • CPCB. 2012. Guidelines for the measurement of ambient air pollutants, vol. I (New Delhi).

  • Collins, M. J., Williams, P. L., & McIntosh, D. L. (2001). Ambient air quality at the site of a former manufactured gas plant. Environmental Monitoring and Assessment, 68(2), 137–152. https://doi.org/10.1023/A:1010747225479.

    Article  CAS  Google Scholar 

  • Coal India Limited (n.d.). https://www.coalindia.in/en-us/performance/physical.aspx. Accesssed 20 March 2018.

  • Danielsson, B. R., Hassoun, E., & Dencker, L. (1982). Embryotoxicity of chromium: distribution in pregnant mice and effects on embryonic cells in vitro. Archives of Toxicology, 51(3), 233–245.

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmospheric Pollution Research, 3(2), 238–246. https://doi.org/10.5094/APR.2012.026.

    Article  CAS  Google Scholar 

  • Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science & Technology, 6(3), 337–346. https://doi.org/10.1007/BF03326071.

    Article  CAS  Google Scholar 

  • Gautam, S., Prasad, N., Patra, A. K., Prusty, B. K., Singh, P., Pipal, A. S., & Saini, R. (2016). Characterization of PM2.5 generated from opencast coal mining operations: a case study of Sonepur Bazari Opencast Project of India. Environmental Technology & Innovation, 6, 1–10. https://doi.org/10.1016/j.eti.2016.05.003.

    Article  Google Scholar 

  • Guan, H., Van Genderen, JL. (1997). Report on environment monitoring of spontaneous combustion in the coal field of North China, Aero-Photogrammetry and Remote Sensing Bureau of China and International Institute for Aerospace survey and Earth Sciences, Enscheda, The Netherland.

  • Gummeneni, S., Yusup, Y. B., Chavali, M., & Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmospheric Research, 101(3), 752–764. https://doi.org/10.1016/j.atmosres.2011.05.002.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11. https://doi.org/10.1093/jexbot/53.366.1.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2007). Assessment of seasonal enrichment of heavy metals in respirable suspended particulate matter of a sub-urban Indian city. Environmental Monitoring and Assessment, 128(1–3), 411–420. https://doi.org/10.1007/s10661-006-9335-1. http://www.foundryinfo-india.org/Critically_polluted_43_industrial_clusters_in.aspx (Accessed on 5th may, 2018). https://news.yale.edu/2018/01/23/2018-environmental-performance-index-air-quality-top-public-health-threat. (Accessed on 30.01.2018). https://www.greenpeace.org/southeastasia/press/679/latest-air-pollution-data-ranks-worlds-cities-worst-to-best/. (Accessed on 15.05.2018). www.indiaenvironmentportal.org.in› files › file › Air Quality Index. (Accessed on 23.07.2018).

  • IARC (2013). Outdoor air pollution a leading environmental cause of cancer deaths. IRIS (Integrated Risk Assessment System), vol. 1995. United States Environmental Protection Agency. www.epa.gov/IRIS/

  • Iijima, S., Matsumoto, N., & Lu, C.-C. (1983). Transfer of chromic chloride to embryonic mice and changes in the embryonic mouse neuroepithelium. Toxicology, 26(3–4), 257–265. https://doi.org/10.1016/0300-483X(83)90086-0.

    Article  CAS  Google Scholar 

  • Jena, S., & Singh, G. (2017). Human health risk assessment of airborne trace elements in Dhanbad, India. Atmospheric Pollution Research, 8(3), 490–502. https://doi.org/10.1016/j.apr.2016.12.003.

    Article  Google Scholar 

  • Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006). Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and Iron in PM10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120(1–3), 347–360. https://doi.org/10.1007/s10661-005-9067-7.

    Article  CAS  Google Scholar 

  • Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmospheric Research, 98(1), 148–162. https://doi.org/10.1016/j.atmosres.2010.07.001.

    Article  CAS  Google Scholar 

  • Koukoulakis, K. G., Chrysohou, E., Kanellopoulos, P. G., Karavoltsos, S., Katsouras, G., Dassenakis, M., Nikolelis, D., & Bakeas, E. (2019). Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: seasonal patterns, emission sources, health implications. Atmospheric Pollution Research, 10(4), 1347–1356. https://doi.org/10.1016/j.apr.2019.03.007.

    Article  CAS  Google Scholar 

  • Kuenzer, C., & Stracher, G. B. (2012). Geomorphology of coal seam fires. Geomorphology, 138(1), 209–222. https://doi.org/10.1016/j.geomorph.2011.09.004.

    Article  Google Scholar 

  • Kuenzer, C., Zhang, J., Tetzlaff, A., van Dijk, P., Voigt, S., Mehl, H., & Wagner, W. (2007). Uncontrolled coal fires and their environmental impacts: investigating two arid mining regions in north-central China. Applied Geography, 27(1), 42–62. https://doi.org/10.1016/j.apgeog.2006.09.007.

    Article  Google Scholar 

  • Lee, B.-K., Jun, N.-Y., & Lee, H. K. (2005). Analysis of impacts on urban air quality by restricting the operation of passenger vehicles during Asian Game events in Busan, Korea. Atmospheric Environment, 39(12), 2323–2338. https://doi.org/10.1016/j.atmosenv.2004.11.044.

    Article  CAS  Google Scholar 

  • Leili, M., Naddafi, K., Nabizadeh, R., Yunesian, M., & Mesdaghinia, A. (2008). The study of TSP and PM10 concentration and their heavy metal content in central area of Tehran, Iran. Air Quality, Atmosphere & Health, 1(3), 159–166. https://doi.org/10.1007/s11869-008-0021-z.

    Article  CAS  Google Scholar 

  • Li, S., Matthews, J., & Sinha, A. (2008). Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science, 319(5870), 1657–1660. https://doi.org/10.1126/science.1151443.

    Article  CAS  Google Scholar 

  • Limbeck, A., Handler, M., Puls, C., Zbiral, J., Bauer, H., & Puxbaum, H. (2009). Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmospheric Environment, 43(3), 530–538. https://doi.org/10.1016/j.atmosenv.2008.10.012.

    Article  CAS  Google Scholar 

  • López, J. M., Callén, M. S., Murillo, R., García, T., Navarro, M. V., de la Cruz, M. T., & Mastral, A. M. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 99(1), 58–67. https://doi.org/10.1016/j.envres.2005.01.007.

    Article  CAS  Google Scholar 

  • Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., et al. (2005). Atmospheric global dust cycle and iron inputs to the ocean: atmospheric iron deposition. Global Biogeochemical Cycles, 19(4), n/a-n/a. https://doi.org/10.1029/2004GB002402.

  • Malandrino, M., Di Martino, M., Ghiotti, G., Geobaldo, F., Grosa, M. M., Giacomino, A., & Abollino, O. (2013a). Inter-annual and seasonal variability in PM10 samples monitored in the city of Turin (Italy) from 2002 to 2005. Microchemical Journal, 107, 76–85. https://doi.org/10.1016/j.microc.2012.05.026.

    Article  CAS  Google Scholar 

  • Malandrino, M., Di Martino, M., Giacomino, A., Geobaldo, F., Berto, S., Grosa, M. M., & Abollino, O. (2013b). Temporal trends of elements in Turin (Italy) atmospheric particulate matter from 1976 to 2001. Chemosphere, 90(10), 2578–2588. https://doi.org/10.1016/j.chemosphere.2012.10.102.

  • Manalis, N., Grivas, G., Protonotarios, V., Moutsatsou, A., Samara, C., & Chaloulakou, A. (2005). Toxic metal content of particulate matter (PM10), within the Greater Area of Athens. Chemosphere, 60(4), 557–566. https://doi.org/10.1016/j.chemosphere.2005.01.003.

    Article  CAS  Google Scholar 

  • Mancuso, T. F. (1975). Consideration of chromium as an industrial carcinogen. Toronto, Ontario: In International Conference on Heavy Metals in the Environment, 343–56.

  • Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 35(27), 4639–4650. https://doi.org/10.1016/S1352-2310(01)00124-8.

    Article  CAS  Google Scholar 

  • Masih, J., Dyavarchetty, S., Nair, A., Taneja, A., & Singhvi, R. (2019). Concentration and sources of fine particulate associated polycyclic aromatic hydrocarbons at two locations in the western coast of India. Environmental Technology & Innovation, 13, 179–188. https://doi.org/10.1016/j.eti.2018.10.012.

    Article  Google Scholar 

  • Matsumoto, N., Iijima, S., & Katsunuma, H. (1976). Placental transfer of chromic chloride and its teratogenic potential in embryonic mice. The Journal of Toxicological Sciences, 1(2), 1–13. https://doi.org/10.2131/jts.1.2_1.

    Article  CAS  Google Scholar 

  • Meena, M., Meena, B. S., Chandrawat, U., & Rani, A. (2016). Seasonal variation of selected metals in particulate matter at an industrial city Kota, India. Aerosol and Air Quality Research, 16(4), 990–999. https://doi.org/10.4209/aaqr.2015.02.0074.

    Article  CAS  Google Scholar 

  • National Ambient Air Quality Standards (2009). Notification, New Delhi, the 18th November.

  • National Remote Sensing Agency (NRSA), Hyderabad (2006). Report on coal mine fire delineation and surface features mapping using satellite data in Jharia coal field, Dhanbad Jharkhand.

  • Padoan, E., Malandrino, M., Giacomino, A., Grosa, M. M., Lollobrigida, F., Martini, S., & Abollino, O. (2016). Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere, 145, 495–507. https://doi.org/10.1016/j.chemosphere.2015.11.094.

    Article  CAS  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5(1), 79–86. https://doi.org/10.5094/APR.2014.010.

    Article  CAS  Google Scholar 

  • Pandey, J., Kumar, D., Singh, V. K., & Mohalik, N. K. (2016). Environmental and socio-economic impacts of fire in Jharia Coalfield, Jharkhand, India: an appraisal. Current Science, 110(9), 1639. https://doi.org/10.18520/cs/v110/i9/1639-1650.

    Article  Google Scholar 

  • Park, R. M., Bena, J. F., Stayner, L. T., Smith, R. J., Gibb, H. J., & Lees, P. S. J. (2004). Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Analysis, 24(5), 1099–1108. https://doi.org/10.1111/j.0272-4332.2004.00512.x.

    Article  Google Scholar 

  • Pathak, A. K., Yadav, S., Kumar, P., & Kumar, R. (2013). Source apportionment and spatial–temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 443, 662–672. https://doi.org/10.1016/j.scitotenv.2012.11.030.

    Article  CAS  Google Scholar 

  • Patra, A. K., Gautam, S., & Kumar, P. (2016). Emissions and human health impact of particulate matter from surface mining operation—a review. Environmental Technology & Innovation, 5, 233–249. https://doi.org/10.1016/j.eti.2016.04.002.

    Article  Google Scholar 

  • Pedersen, N. B. (1982). The effects of chromium on the skin. In Biological and environmental aspects of chromium, 249–275.

  • Prodi, F., Belosi, F., Contini, D., Santachiara, G., Di Matteo, L., Gambaro, A., et al. (2009). Aerosol fine fraction in the Venice Lagoon: particle composition and sources. Atmospheric Research, 92(2), 141–150. https://doi.org/10.1016/j.atmosres.2008.09.020.

    Article  CAS  Google Scholar 

  • Quiterio, S. L., Sousa da Silva, C. R., Arbilla, G., & Escaleira, V. (2004). Metals in airborne particulate matter in the industrial district of Santa Cruz, Rio de Janeiro, in an annual period. Atmospheric Environment, 38(2), 321–331. https://doi.org/10.1016/j.atmosenv.2003.09.017.

    Article  CAS  Google Scholar 

  • Roy, P., Kumar Sikdar, P., Singh, G., & Kumar Pal, A. (2012). Source apportionment of ambient PM10: a case study from a mining belt of Orissa. Atmósfera, 25(3), 311–324.

    CAS  Google Scholar 

  • Senlin, L., Longyi, S., Minghong, W., Zheng, J., & Xiaohui, C. (2007). Chemical elements and their source apportionment of PM10 in Beijing urban atmosphere. Environmental Monitoring and Assessment, 133(1–3), 79–85. https://doi.org/10.1007/s10661-006-9561-6.

    Article  CAS  Google Scholar 

  • Shaheen, N., Shah, M. H., Khalique, A., & Jaffar, M. (2005). Metal levels in airborne particulate matter in urban Islamabad, Pakistan. Bulletin of Environmental Contamination and Toxicology, 75(4), 739–746. https://doi.org/10.1007/s00128-005-0813-x.

    Article  CAS  Google Scholar 

  • Shridhar, V., Khillare, P. S., Agarwal, T., & Ray, S. (2010). Metallic species in ambient particulate matter at rural and urban location of Delhi. Journal of Hazardous Materials, 175(1–3), 600–607. https://doi.org/10.1016/j.jhazmat.2009.10.047.

    Article  CAS  Google Scholar 

  • Singh, G., Roy, D., & Sinha, S. (2014). Ambient air quality assessment with particular reference to particulates in Jharia Coalfield, Eastern India. Journal of Environmental Science & Engineering, 56(1), 19–30.

    CAS  Google Scholar 

  • Song, Z., Zhu, H., Jia, G., & He, C. (2014). Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. Journal of Loss Prevention in the Process Industries, 32, 78–94. https://doi.org/10.1016/j.jlp.2014.08.002.

    Article  Google Scholar 

  • Tripathi, A. K., & Gautam, M. (2007). Biochemical parameters of plants as indicators of air pollution. Journal of Environmental Biology, 28(1), 127–132.

    CAS  Google Scholar 

  • Tasdemir, Y., Kural, C., Cindoruk, S. S., & Vardar, N. (2006). Assessment of trace element concentrations and their estimated dry deposition fluxes in an urban atmosphere. Atmospheric Research, 81(1), 17–35.

  • U.S. ATSDR (U.S. Agency for Toxic Substances and Disease Registry). (2005). Toxicological profile for lead, U.S. Department of Health and Human Services, Public Health Service, Atlanta, U.S.A, p. 582.

  • USEPA (Environmental Protection Agency) (1990). Air quality criteria for lead: supplement to the 1986 Addendum. Environmental Criteria and Assessment Office, Research Triangle Park, NC. EPA-600/8e89/049F.

  • Weckwerth, G. (2001). Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 35(32), 5525–5536. https://doi.org/10.1016/S1352-2310(01)00234-5.

    Article  CAS  Google Scholar 

  • Yadav, M., Sahu, S. P., & Singh, N. K. (2019). Multivariate statistical assessment of ambient air pollution in two coalfields having different coal transportation strategy: a comparative study in Eastern India. Journal of Cleaner Production, 207, 97–110. https://doi.org/10.1016/j.jclepro.2018.09.254.

    Article  CAS  Google Scholar 

  • Zhang, J., Wagner, W., Prakash, A., Mehl, H., & Voigt, S. (2004). Detecting coal fires using remote sensing techniques. International Journal of Remote Sensing, 25(16), 3193–3220. https://doi.org/10.1080/01431160310001620812.

    Article  Google Scholar 

  • Zhang, F., Chen, Y., Tian, C., Wang, X., Huang, G., Fang, Y., & Zong, Z. (2014). Identification and quantification of shipping emissions in Bohai Rim, China. Science of the Total Environment, 497–498, 570–577. https://doi.org/10.1016/j.scitotenv.2014.08.016.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Indian Institute Technology (Indian School of Mines) Dhanbad for providing all the necessary laboratory facilities during the research work. One of the authors (Shilpi Mondal) is also thankful to the Ministry of Human Resource Development for providing IIT (ISM) JRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdeep Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors. The manuscript has been prepared following the instructions provided in the Author’s Guidelines of the journal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Singh, G. & Jain, M.K. Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield, India. Environ Monit Assess 192, 405 (2020). https://doi.org/10.1007/s10661-020-08324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08324-z

Keywords

Navigation