Skip to main content
Log in

Histopathological alterations in gills of a fish (Astyanax bifasciatus) in neotropical streams: negative effects of riparian forest reduction and presence of pesticides

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The reduction of riparian vegetation around aquatic environments causes several physicochemical alterations and favors the entry of pesticides via surface runoff. Such changes have negative effects on aquatic organisms. In this study, we evaluated histopathological alterations in gills of Astyanax bifasciatus to test the hypothesis that more severe histopathological alterations occur in gills of fish from streams with higher agricultural impact from the surrounding area. The specimens were collected by electrofishing in seven streams of the lower Iguaçu basin between August 2015 and February 2016. The gills were processed according to routine histological methods and examined by light microscopy. The histopathological alterations, mainly stage II (lamellar aneurysm and total fusion of lamellae), were observed in fish collected in streams with higher agricultural activity. In these streams, the histopathological index indicated slight to moderate organ lesions. In contrast, in streams with more vegetation cover, fish collected presented stage I histopathological alterations (lamellar edema and lamellar hyperplasia), and the HI indicated normal functioning of the gills. In addition, chloride and acid mucous cells were more abundant in the gills of fish collected in rural streams. Our findings demonstrate that more severe histopathological alterations were registered in fish collected from streams with intense agricultural activity in the surrounding area. Therefore, it highlights that vegetation cover around the streams is a positive force for the conservation and health of aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alazemi, B. M., Lewis, J. W., & Andrews, E. B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: An ultrastructural study. Environmental Technology, 17(1), 225–238.

    Article  CAS  Google Scholar 

  • Al-Ghanbousi, R., Ba-Omar, T., Victor, R. (2012). Effect of deltamethrin on the gills of Aphanius díspar: A microscopic study. Tissue and Cell.v, 44, 7-14.

    Article  CAS  Google Scholar 

  • Baumgartner, G., Pavanelli, C. S., Baumgartner, D., Bifi, A. G., Debona, T., & Frana, V. A. (2012). Peixes do baixo rio Iguaçu. EDUEM, Maringá. https://doi.org/10.7476/9788576285861.

  • Bentivegna, C. S., Cooper, K. R., Olson, G., Pena, E. A., Millemann, D. R., & Portier, R. J. (2015). Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the deepwater horizon (DWH) oil spill. Marine Environmental Research, 112, 21–34.

    Article  CAS  Google Scholar 

  • Bortolozo, F. R., Favaretto, N., Dieckow, J., Moraes, A., Vezzani, F. M., & Silva, E. D. B. (2015). Water, sediment and nutrient retention in native vegetative filter strips of southern Brazil. Internation Journal of Plant Nutrition Soil Science, 4(5), 426–436.

    Article  Google Scholar 

  • Bueno-Krawczyk, A. C. D., Guiloski, I. C., Piancini, L. D. S., et al. (2015). Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere, 135, 247–264.

    Article  Google Scholar 

  • Casatti, L., Langeani, F., & Castro, R. M. C. (2001). Peixes de riacho do Parque Estadual Morro do Diabo, Bacia do Alto Rio Paraná, SP. Biota Neotropica, 1(1), 1–15.

    Article  Google Scholar 

  • Casatti, L. (2010). Alterações no Código Florestal Brasileiro: impactos potenciais sobre a ictiofauna. Biota Neotrop, 10(4), 31–34. https://doi.org/10.1590/S1676-06032010000400002.

    Article  Google Scholar 

  • Cerqueira, C. C. C., & Fernandes, M. N. (2002). Gill tissue recovery after copper exposure and blood parameter responses in the tropical fish Prochilodus scrofa. Ecotoxicology and Environmental Safety, 52, 83–91.

    Article  CAS  Google Scholar 

  • Chiang, G., Munkittrick, K. R., Urrutia, R., Concha, C., Rivas, M., Diaz-Jaramillo, M., & Barra, R. (2012). Liver ethoxyresorufin-O-deethylase and brain acetylcholinesterase in two freshwater fish species of South America; the effects of seasonal variability on study design for biomonitoring. Ecotoxicology and Environmental Safety, 86, 147–155.

    Article  CAS  Google Scholar 

  • Colvin, S. A., Sullivan, S. M. P., Shirey, P. D., Colvin, R. W., Winemiller, K. O., Hughes, R. M., et al. (2019). Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries, 44(2), 73–91.

    Article  Google Scholar 

  • CONAMA. (2005). Classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Publicação DOU n° 053, de 18/03/2005, p. 58–63. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459 . Accessed 27 november 2019

  • Dang, M., Nørregaard, R., Bach, L., Sonne, C., Søndergaard, J., Gustavson, K., Aastrup, P., & Nowak, B. (2017). Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environmental Research, 153, 171–180.

    Article  CAS  Google Scholar 

  • Dane, H., & Sisman, T. (2015). Histopathological changes in gill and liver of Capoeta capoeta living in the Karasu River, Erzurum. Environmental Toxicology, 30(8), 904–917. https://doi.org/10.1002/tox.21965.

    Article  CAS  Google Scholar 

  • David, J. A. O., & Fontanetti, C. S. (2009). The role of mucus in Mytella falcata (Orbigny, 1842) gills from polluted environments. Water, Air, and Soil Pollution, 203, 261–266.

    Article  CAS  Google Scholar 

  • Delariva, R. L., Hahn, N. S., & Kashiwaqui, E. A. (2013). Diet and trophic structure of the fish fauna in a subtropical ecosystem: Impoundment effects. Neotrop Ichthyol, 11(4), 891–904. https://doi.org/10.1590/S1679-62252013000400017.

    Article  Google Scholar 

  • Delariva, R. L., Neves, M. P., Larentis, C., Kliemann, B. C. K., Baldasso, M. C., & Wolff, L. L. (2018). Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotropica, 18(3).

  • El-Amrani, S., et al. (2012). Bioconcentration of pesticides in zebrafish eleuthero embryos (Danio rerio). Science of the Total Environment, 425, 184–190.

    Article  CAS  Google Scholar 

  • Freire, C. A., Souza-Bastos, L. R., Chiesse, J., Tincani, F. H., Piancini, L. D. S., Randi, M. A. F., Prodocimo, V., Cestari, M. M., Silva-de-Assis, H. C. S., Abilhoa, V., Vitule, J. R. S., Bastos, L. P., & de Oliveira-Ribeiro, C. A. (2015). A multibiomarker evaluation of urban, industrial and agricultural exposure of small characins in a large freshwater basin in southern Brazil. Environmental Science and Pollution Research International, 22(17), 13263–13277.

    Article  CAS  Google Scholar 

  • Freitas, J. S., Teresa, F. B., & Almeida, E. A. (2017). Influence of temperature on the antioxidant responses and lipid peroxidation or two species of tadpoles (Rhinella schneideri and Physalaemus nattereri) exposed to the herbicide sulfentrazone (Boral 500SC®). Comparative biochemistry and Physiology Part C, 197(1), 32–44.

    CAS  Google Scholar 

  • Ghisi, N. C., Oliveira, E. C., Mota, T. E. M., Vanzetto, G. V., Roque, A. A., Godinho, J. P., & Bettim, F. L. (2016). Integrated biomarker response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó River, southern Brazil. Chemosphere, 161, 69–79. https://doi.org/10.1016/j.chemosphere.2016.06.113.

    Article  CAS  Google Scholar 

  • Gonçalves, J. F. J., Martins, R. T., Ottoni, B. M. P., & Couceiro, S. R. M. (2014). Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In N. Hamada, J. L. Nessimian, & R. B. Querino (Eds.), Insetos aquáticosna Amazônia Brasileira: Taxonomia, biologia e ecologia (p. 724). Manaus: INPA.

    Google Scholar 

  • IBGE. (2015). Indicadores de desenvolvimento sustentável: Brasil: 2015/IBGE, Coordenação de Recursos Naturais e Estudos Ambientais e Coordenação de Geografia. Rio de Janeiro: IBGE.

    Google Scholar 

  • Jaramillo-Villa, U., & Caramaschi, É. P. (2008). Índices de integridade biótica usando peixes de água doce: uso nas regiões tropical e subtropical. Oecologia Brasiliensis, 12(3), 442–462.

    Google Scholar 

  • Lowe-McConnell, R. H. (1999). Estudos ecológicos de comunidades de peixes tropicais (534 p). São Paulo: EDUSP.

    Google Scholar 

  • Mallat, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630.

    Article  Google Scholar 

  • Middlebrooks, E. J., Gaspar, M. J., Gaspar, R. D., Reynolds, J. H., Porcella, D. B. (1973). Effects of temperature on the toxicity to the aquatic biota of waste discharges—a compilation of the literature. Reports.

  • Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., & Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica, 65, 14–21.

    Article  Google Scholar 

  • Neves, M. P., Amorim, J. P. A., & Delariva, R. L. (2018). Influence of land use on the health of a detritivorous fish (Ancistrus mullerae) endemic to the Iguassu ecoregion: Relationship between agricultural land use and severe histopathological alterations. Environmental Science and Pollution Research, 25, 11670–11682. https://doi.org/10.1007/s11356-018-1283-0.

    Article  Google Scholar 

  • Nimet, J., Guimarães, A. T. B., & Delariva, R. L. (2017). Use of muscular cholinesterase of Astyanax bifasciatus (Teleostei, Characidae) as a biomarker in biomonitoring of rural streams. Bulletin of Environmental Contamination and Toxicology, 99(2), 232–238.

    Article  CAS  Google Scholar 

  • Nimet, J., Amorim, J. P. A., & Delariva, R. L. (2018). Histopathological alterations in Astyanax bifasciatus (Teleostei: Characidae) correlated with land uses of surroundings of streams. Neotropical Ichthyology, 16(1), e170129. https://doi.org/10.1590/1982-0224-20170129.

    Article  Google Scholar 

  • Nogueira, C., Buckup, P. A., Menezes, N. A., Oyakawa, O. T., Ksecker, T. P., Neto, M. B. R., & Silva, J. M. C. (2010). Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS One, 5(6), e11390.

    Article  Google Scholar 

  • Paulino, M. G., Benze, T. P., Sadauskas-Henrique, H., Sakuragui, M. M., Fernandes, J. B., & Fernandes, M. N. (2014). The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: Bioaccumulation and histopathological biomarkers. Science of the Total Environment, 497, 293–306.

    Article  Google Scholar 

  • Poleksic, V., & Mitrovic-Tutundzic, V. (1994). Fish gills as a monitor of sublethal and chronic effects of pollution. In R. Müller & R. Lloyd (Eds.), Sublethal and chronic effects of pollutants on freshwater fish (pp. 339–352). Oxford: Fishing News Books.

    Google Scholar 

  • Rajkumar, K. S., Kanipandian, N., & Thirumurugan, R. (2016). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Applied Nanoscience, 6, 19–29.

    Article  CAS  Google Scholar 

  • Richmonds, C., & Dutta, H. M. (1989). Histopathological changes induced by malathion in the gills of bluegill Lepomis macrochirus. Bulletin of Environmental Contamination and Toxicology, 43, 123–130.

    Article  CAS  Google Scholar 

  • Rudnicki, C. A. M., et al. (2009). Gills of juvenile fish Piaractus mesopotamicus as histological biomarkers for experimental sub-lethal contamination with the organophosphorus Azodrin-400. Brazilian Archives of Biology and Technology, 52(6), 1431–1441.

    Article  CAS  Google Scholar 

  • Santana, M. S., Yamamoto, F. Y., Sandrini-Neto, L., Filipak Neto, F., Ortolani-Machado, C. F., Oliveira Ribeiro, C. A., & Prodocimo, M. M. (2018). Diffuse sources of contamination in freshwater fish: Detecting effects through active biomonitoring and multi-biomarker approaches. Ecotoxicology and Environmental Safety, 149, 173–181.

    Article  CAS  Google Scholar 

  • Shankar, K. M., Kiran, B. R., & Venkateshwarlu, M. (2013). A review on toxicity of pesticides in fish. International Journal of Open Scientific Research, 1(1), 15–36.

    Google Scholar 

  • Silva, M. R., Campos, A. C. E., & Bohm, F. Z. (2013). Agrotóxicos e seus impactos sobre ecossistemas aquáticos continentais. SaBios Revista de Saúde e Biol, 8, 46–58.

    Google Scholar 

  • Subburaj, A., Jawahar, P., Jayakumar, N., Srinivasan, A., & Ahilan, B. (2018). Acute toxicity bioassay of Malathion (EC 50%) on the fish, Oreochromis mossambicus (tilapia) and associated histological alterations in gills. Journal of Entomology and Zoology Studies, 6(1), 103–107.

  • Takashima, F., & Hibiya, T., (1995). An Atlas of Fish Histology: Normal and Pathological Features. Fischer Verlag, Tokyo: Kodanska /Stuttgart, 195, 2nd ed.

  • Uner, N., Oruc, E. O., Sevgiler, Y., Sahin, N. D., & Usta, D. (2006). Effects of Diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21, 241–254.

    Article  Google Scholar 

  • Wootton, R. J. (1990). Ecology of Teleost Fishes. Fish and Fisheries Series 1. Chapman & Hall, London, 404.

  • Yamamoto, F. Y., Pereira, M. V. M., Lottermann, E., Santos, G. S., Stremel, T. R. O., Doria, H. B., & Neto, F. F. (2016). Bioavailability of pollutants sets risk of exposure to biota and human population in reservoirs from Iguaçu River (southern Brazil). Environmental Science and Pollution Research, 23(18), 18111–18128.

    Article  CAS  Google Scholar 

  • Yamamoto, F. Y., Garcia, J. R. E., Kupsco, A., & Oliveira Ribeiro, C. A. (2017). Vitellogenin levels and others biomarkers show evidences of endocrine disruption in fish species from Iguaçu River—southern Brazil. Chemosphere, 186, 88–99. https://doi.org/10.1016/j.chemosphere.2017.07.111.

    Article  CAS  Google Scholar 

  • Yancheva, V., Velcheva, I., Stoyanova, S., & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Applied Ecology and Environmental Research, 14, 47–75.

    Article  Google Scholar 

  • Zeni, J. O., Pérez-Mayorga, M. A., Roa-Fuentes, C. A., Brejão, G. L., & Casatti, L. (2018). How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(8), 1238–1252.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the support of the Western Paraná State University and all our colleagues of Laboratório de Ictiologia, Ecologia e Biomonitoramento (LIEB) for the help in fieldwork and in the laboratory.

Funding

This research was supported by grants from the CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jardel Nimet.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimet, J., Neves, M.P., Viana, N.P. et al. Histopathological alterations in gills of a fish (Astyanax bifasciatus) in neotropical streams: negative effects of riparian forest reduction and presence of pesticides. Environ Monit Assess 192, 58 (2020). https://doi.org/10.1007/s10661-019-8030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8030-y

Keywords

Navigation