Skip to main content

Advertisement

Log in

Disaggregation of conventional soil map by generating multi realizations of soil class distribution (case study: Saadat Shahr plain, Iran)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 16 April 2021

This article has been updated

Abstract

Conventional soil maps generally depict information about soil spatial distribution in the framework of crisp boundaries of tessellated soil polygons. Such maps in standard soil survey procedures determine map unit composition on the basis of relative acreage occupied by individual major and minor soil components within soil map unit without addressing the specific location of each component in the polygon boundary. These limitations in addition to the sharp-edge boundaries of conventional soil maps are considered obstacles for modern land resource management. To increase detail in the polygon of conventional soil maps, we have produced a spatially disaggregated soil class map of a relatively flat agricultural plain called Saadat Shahr in South-Central Iran, using DSMART algorithm. DSMART is a known DSM-based disaggregation and harmonization algorithm that works through resampled classification trees to estimate the probability of the existence of each possible soil classes and also to prepare the maps of the most probable soil class, second most probable, and so on in raster format. The conventional soil map and 124 georeferenced profiles, as well as a set of numerical and categorical auxiliary data in 10-m resolutions in the extent of the study area utilized as the SCORPAN variables, were used as the inputs of the DSMART algorithm. A set of 78 independent sampling points generated by Latin hypercube sampling scheme were investigated and then used for validation of the DSMART raster outputs. The results indicated an improvement in disaggregated maps in the case of allocating soil components within the map units. In the generated DSMART, overall accuracy for seven soil subgroups was 68%. The best prediction obtained for Typic Xerorthents and Typic Calcixerepts, meanwhile a few classes were poorly predicted. For second most probable and third most probable maps, 17% and 0.5% of predicted soils match that observed respectively. This study revealed that DSMART as a disaggregation method can be used for enhancing existence soil map with poor descriptive data in the case of allocating soil classes in a more detailed way compared to the relevant original map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Arrouays, D., McKenzie, N., de Forges, A. R., Hempel, J., & McBratney, A. B. (2014). Global Soil Map: basis of the global spatial soil information system. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards Jr., T. C. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239, 68–83.

    Article  Google Scholar 

  • Bui, E. N., & Moran, C. J. (2001). Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data. Geoderma, 103(1-2), 79–94.

    Article  Google Scholar 

  • Bui, E. N., Loughhead, A., & Corner, R. (1999). Extracting soil-landscape rules from previous soil surveys. Soil Research, 37(3), 495–508.

    Article  Google Scholar 

  • Burrough, P. A., van Gaans, P. F., & Hootsmans, R. (1997). Continuous classification in soil survey: spatial correlation, confusion and boundaries. Geoderma, 77(2-4), 115–135.

    Article  Google Scholar 

  • Chaney, N., Hempel, J. W., Odgers, N.P., McBratney, A. B., & Wood, E. F. (2014). Spatial disaggregation and harmonization of gSSURGO. In ASA, CSSA and SSSA international annual meeting, Long Beach. ASA, CSSA and SSSA.

  • Ditzler, C., Scheffe, K., & Monger, H. C. (2017). Soil Survey Manual, USDA Handbook 18, Soil Science Division Staff.

  • Ellili, Y., Walterb, C., Michotb, D., Sabyc, N., Vincenta, S., & Lemercierb, B. (2019). Validation of digital maps derived from spatial disaggregation of legacy soil maps. Geoderma, 365, 113907.

    Article  CAS  Google Scholar 

  • Emberger, L. (1963). Bioclimatic map of the Mediterranean zone: explanatory notes (Vol. 21). UNESCO-FAO.

  • Gallant, J. C., & Austin, J. M. (2015). Derivation of terrain covariates for digital soil mapping in Australia. Soil Research, 53(8), 895–906.

    Article  Google Scholar 

  • Gallant, J. C., & Dowling, T. I. (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12), 1347–1360.

    Article  Google Scholar 

  • Gallant, J. P., & Wilson, J. C. (2000). Terrain analysis: principles and applications. Hoboken: Wiley.

    Google Scholar 

  • Grunwald, S. (2010). Current state of digital soil mapping and what is next. In Digital Soil Mapping (pp. 3–12). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hansen, M. K., Brown, D. J., Dennison, P. E., Graves, S. A., & Bricklemyer, R. S. (2009). Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data. Geoderma, 150(1-2), 72–84.

    Article  Google Scholar 

  • Häring, T., Dietz, E., Osenstetter, S., Koschitzki, T., & Schröder, B. (2012). Spatial disaggregation of complex soil map units: A decision-tree based approach in Bavarian forest soils. Geoderma, 185, 37–47.

    Article  Google Scholar 

  • Hassanshahi, H. (1991). Semi detailed soil survey of Saadat Shar, Seidan, Sivand and Arsenjan plains in Fars Province. Tehran: Soil and Water Research Institute of Iran. No: 838 115 p. (In Persian).

    Google Scholar 

  • Hengl, T. (2009). A practical guide to geostatistical mapping (Vol. 52). Amsterdam: Office for Official Publications of the European Communities.

    Google Scholar 

  • Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62–77.

    Article  Google Scholar 

  • Holmes, K. W., Odgers, N. P., Griffin, E. A., & van Gool, D. (2014). Spatial disaggregation of conventional soil mapping across Western Australia using DSMART. Global Soil Map: Basis of the global spatial soil information system. London: Taylor& Francis, 273–279.

  • Kempen, B., Brus, D. J., Heuvelink, G. B., & Stoorvogel, J. J. (2009). Updating the 1: 50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, 151(3-4), 311–326.

    Article  Google Scholar 

  • Kerry, R., Goovaerts, P., Rawlins, B. G., & Marchant, B. P. (2012). Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170, 347–358.

    Article  CAS  Google Scholar 

  • Lagacherie, P., Arrouays, D., & Walter, C. (2013). Cartographie numérique des sols: Principe, mise en œuvre et potentialités. Etude et Gestion des Sols, 20(1), 83–98.

    Google Scholar 

  • MacMillan, R. A., Moon, D. E., & Coupé, R. A. (2007). Automated predictive ecological mapping in a forest region of BC, Canada, 2001–2005. Geoderma, 140(4), 353–373.

    Article  Google Scholar 

  • Mahler, P. J. (1970). Manual of multipurpose land classification, Report no. 212. Tehran: Soil and Water Research Institute.

    Google Scholar 

  • Malone, B. P., Minasny, B., & McBratney, A. B. (2017). Using digital soil mapping to update, harmonize and disaggregate legacy soil maps. In Using R for Digital Soil Mapping (pp. 221–230). Cham: Springer.

    Chapter  Google Scholar 

  • McBratney, A. B. (1998). Some considerations on methods for spatially aggregating and disaggregating soil information. In Soil and water quality at different scales (pp. 51–62). Dordrecht: Springer.

    Chapter  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3–52.

    Article  Google Scholar 

  • Miller, B. A., Koszinski, S., Wehrhan, M., & Sommer, M. (2015). Impact of multi-scale predictor selection for modeling soil properties. Geoderma, 239, 97–106.

    Article  Google Scholar 

  • Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388.

    Article  Google Scholar 

  • Minasny, B., McBratney, A. B., Malone, B. P., & Wheeler, I. (2013). Digital mapping of soil carbon. In Advances in Agronomy 118, 1–47.

  • Mirakzehi, K., Pahlavan-Rad, M. R., Shahriari, A., & Bameri, A. (2018). Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233–240.

    Article  Google Scholar 

  • Moller, A. B., Malone, B., Odgers, N. P., Beucher, A., Iversen, B. V., Greve, M. H., & Minasny, B. (2019). Improved disaggregation of conventional soil maps. Geoderma, 341, 148–160.

    Article  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.

    Article  Google Scholar 

  • Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E., & Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment, 188(3), 195.

    Article  CAS  Google Scholar 

  • National Cartographic Center of Iran. (1998). 1:25,000 digital topographic maps, Tehran, Iran. http://www.ngdir.ir/. Accessed 1998.

  • Nauman, T. W., & Thompson, J. A. (2014). Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees. Geoderma, 213, 385–399.

    Article  Google Scholar 

  • Odgers, N. P., Sun, W., McBratney, A. B., Minasny, B., & Clifford, D. (2014). Disaggregating and harmonising soil map units through resampled classification trees. Geoderma, 214, 91–100.

    Article  Google Scholar 

  • Odgers, N. P., McBratney, A. B., & Minasny, B. (2015). Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma, 237, 190–198.

    Article  Google Scholar 

  • Pahlavan-Rad, M. R., & Akbarimoghadam, A. (2018). Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena, 160, 275–281.

    Article  CAS  Google Scholar 

  • Qi, J., Kerr, Y., & Chehbouni, A. (1994). External factor consideration in vegetation index development. Proc. of Physical Measurements and Signatures in Remote Sensing, ISPRS, 723-730.

  • Quinlan‚ J. R. (2003). C5.0 Online Tutorial. Quinlan‚ J. R. C5.0 Online Tutorial. https://www.rulequest.com.

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing Internet: http://www.R-project.org. Accessed 2012.

  • Rudiyanto Minasny, B., Setiawan, B. I., Arif, C., Saptomo, S. K., & Chadirin, Y. (2016). Digital mapping for cost-effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands. Geoderma, 117(1–2), 3–52.

    Google Scholar 

  • SAGA, G, 2013. System for automated geoscientific analyses. Available at: www.saga-gis.org/en/index.html. Accessed 2013.

  • Sarmento, E. C., Giasson, E., Weber, E. J., Flores, C. A., & Hasenack, H. (2017). Disaggregating conventional soil maps with limited descriptive data: A knowledge-based approach in Serra Gaúcha, Brazil. Geoderma Regional, 8, 12–23.

    Article  Google Scholar 

  • Scull, P., Okin, G., Chadwick, O. A., & Franklin, J. (2005). A comparison of methods to predict soil surface texture in an alluvial basin. The Professional Geographer, 57(3), 423–437.

    Article  Google Scholar 

  • Segl, K., Guanter, L., Gascon, F., Kuester, T., Rogass, C., & Mielke, C. (2015). S2eteS: An end-to-end modeling tool for the simulation of Sentinel-2 image products. IEEE Transactions on Geoscience and Remote Sensing, 53(10), 5560–5571.

    Article  Google Scholar 

  • Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). Washington DC: USDA-Natural Resources Conservation Service.

    Google Scholar 

  • Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399.

    Google Scholar 

  • Subburayalu, S. K., Jenhani, I., & Slater, B. K. (2014). Disaggregation of component soil series on an Ohio County soil survey map using possibilistic decision trees. Geoderma, 213, 334–345.

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., & Triantafilis, J. (2015). Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 253, 67–77.

    Article  Google Scholar 

  • Teng, H., Rossel, R. A. V., Shi, Z., & Behrens, T. (2018). Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena, 164, 125–134.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  • Vincent, S., Lemercier, B., Berthier, L., & Walter, C. (2018). Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships. Geoderma, 311, 130–142.

    Article  Google Scholar 

  • Wei, S., McBratney, A., Hempel, J., Minasny, B., Malone, B., D’Avello, T., Burras, L., & Thompson, J. (2010). Digital harmonisation of adjacent analogue soil survey areas–4 Iowa counties. In Proceedings World Congress of Soil Science: Soil solutions for a changing world, 19th, Brisbane, Australia (pp. 1–6).

  • Yang, L., Jiao, Y., Fahmy, S., Zhu, A., Hann, S., Burt, J. E., & Qi, F. (2011). Updating conventional soil maps through digital soil mapping. Soil Science Society of America Journal, 75(3), 1044–1053.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the support of the University of Zanjan (ZNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Delavar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to error in the name of the third author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, M., Delavar, M.A., Taghizadehe-Mehrjardi, R. et al. Disaggregation of conventional soil map by generating multi realizations of soil class distribution (case study: Saadat Shahr plain, Iran). Environ Monit Assess 191, 769 (2019). https://doi.org/10.1007/s10661-019-7942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7942-x

Keywords

Navigation