Skip to main content
Log in

Classification and Digital Mapping of Soils in a Semiarid Region of Afghanistan

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A soil map provides information on soil spatial distribution. Such information is essential for effective use of soil resources for crop production, land evaluation, spatial planning, environmental control, and for other similar purposes. In this study, a digital soil map for a semiarid region of Afghanistan was developed. This map contains soil taxonomic information up to the subgroup level, which is the first such attempt in Afghanistan. A total of 114 soil samples were collected in and around the Khost Province through an intensive soil survey. The collected samples were classified into 14 subgroups of soils, following the USDA soil classification system. A soil land inference model (SoLIM) was applied for mapping the recognized 14 soil subgroups digitally, via an expert knowledge-based fuzzy soil inference scheme, with surface topography and other spatial data as inputs. The overall accuracies from the error matrix and Kappa statistics were 0.74 and 0.71, respectively. This map was also compared with the currently used soil map. A general agreement between the two maps was found in the spatial distribution of soil classes, at the great group level. However, the newly developed map contains more detailed information on soils, which might be useful for the advanced use of soil information, for example, to better determine the crop type for cultivation by considering the detailed soil properties. Throughout this study, 14 different recognized classes of soil subgroups were digitally mapped in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Jafari, H. Khademi, P.A. Finke, J. Van de Wauw, and S. Ayoubi, “Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran,” Geoderma 232–234, 148–163 (2014). https://doi.org/10.1016/j.geoderma.2014.04.029

    Article  Google Scholar 

  2. A. Jafari, P. A. Finke, J. Vande Wauw, S. Ayoubi, and H. Khademi, “Spatial prediction of USDA—great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types,” Eur. J. Soil Sci. 63 (2), 284–298 (2012). https://doi.org/10.1111/j.1365-2389.2012.01425.x

    Article  Google Scholar 

  3. A. Jafari, S. Ayoubi, H. Khademi, P. A. Finke, and N. Toomanian, “Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region,” Geomorphology 201, 86–97 (2013). https://doi.org/10.1016/j.geomorph.2013.06.010

    Article  Google Scholar 

  4. A. C. Hildreth, Afghan Soils in Relation to Agricultural Production (Cheyenne, WY, 1957).

    Google Scholar 

  5. A. X. Zhu and L. E. Band, “A knowledge-based approach to data integration for soil mapping,” Can. J. Remote Sens. 20 (4), 408–418 (1994). https://doi.org/10.1080/07038992.1994.10874583

    Article  Google Scholar 

  6. A. X. Zhu, “A similarity model for representing soil spatial information,” Geoderma 77 (2–4), 217–242 (1997). https://doi.org/10.1016/S0016-7061(97)00023-2

    Article  Google Scholar 

  7. A. X. Zhu, “Mapping soil landscape as spatial continua: the neural network approach,” Water Resour. Res. 36 (3), 663–677 (2000). https://doi.org/10.1029/1999WR900315

    Article  Google Scholar 

  8. A. X. Zhu, B. Hudson, J. Burt, K. Lubich, and D. Simonson, “Soil mapping using GIS, expert knowledge, and fuzzy logic,” Soil Sci. Soc. Am. J. 65 (5), 1463–1472 (2001). https://doi.org/10.2136/sssaj2001.6551463x

    Article  Google Scholar 

  9. A. X. Zhu, L. Band, R. Vertessy, and B. Dutton, “Derivation of soil properties using a soil land inference model (SoLIM),” Soil Sci. Soc. Am. J. 61 (2), 523–533 (1997). https://doi.org/10.2136/sssaj1997.03615995006100020022x

    Article  Google Scholar 

  10. A. X. Zhu, L. E. Band, B. Dutton, and T. J. Nimlos, “Automated soil inference under fuzzy logic,” Ecol. Model. 90 (2), 123–145 (1996). https://doi.org/10.1016/03043800(95)00161-1

    Article  Google Scholar 

  11. B. Adams and S. S. D. Foster, “Land-surface zoning for groundwater protection,” Water Environ. J. 6 (4), 312–319 (1992). https://doi.org/10.1111/j.17476593.1992.tb00755.x

    Article  Google Scholar 

  12. B. Boonsompopphan, T. Vearasilp, R. S. Yost, and T. Attanandana, “Field identification of soil series: indexing and retrieving soil information while sharing experience and knowledge,” Soil Sci. 173 (10), 736–744 (2008). https://doi.org/10.1097/SS.0b013e31818939cf

    Article  Google Scholar 

  13. B. Fu, L. Chen, K. Ma, H. Zhou, and J. Wang, “The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China,” Catena 39 (1), 69–78 (2000). https://doi.org/10.1016/S0341-8162(99)00084-3

    Article  Google Scholar 

  14. C. F. Pain, M. A. Abdelfattah, S. A. Shahid, and C. Ditzler, “Soil-landform relationships in the arid northern United Arab Emirates,” in Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies (Springer-Verlag, New York, 2016), pp. 211–225. https://doi.org/10.1007/978-3-319-19159-1_12

  15. D. J. Bedendo, G. A. Schulz, G. F. Olmedo, and M. E. Angelini, “Updating a physiography-based soil map using digital soil mapping techniques,” in Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies (Springer-Verlag, New York, 2016), pp. 285–303. https://doi.org/10.1007/978-3-319-19159-1_18

  16. D. J. Pennock, B. J. Zebarth, and E. De Jong, “Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada,” Geoderma 40 (3–4), 297–315 (1987). https://doi.org/10.1016/0016-7061(87)90040-1

    Article  Google Scholar 

  17. D. L. Corwin, P. J. Vaughan, and K. Loague, “Modeling nonpoint source pollutants in the vadose zone with GIS,” Environ. Sci. Technol. 31 (8), 2157–2175 (1997). https://doi.org/10.1021/es960796v

    Article  Google Scholar 

  18. D. N. Kozlov and M. V. Konyushkova, “State of the art and prospects of digital soil mapping: the results of the third global workshop (Logan, USA, 2008),” Eurasian Soil Sci. 42, 699–702 (2009). https://doi.org/10.1134/S1064229309060167

    Article  Google Scholar 

  19. E. Stehfest, D. van Vuuren, T. Kram, et al., Integrated Assessment of Global Environmental Change with IMAG-E 3.0: Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, Hague, 2014).

  20. E. Wali, A. Datta, R. P. Shrestha, and S. Shrestha, “Development of a land suitability model for saffron (Crocus sativus L.) cultivation in Khost Province of Afghanistan using GIS and AHP techniques,” Arch. Agron. Soil Sci. 62 (7), 921–934 (2016). https://doi.org/10.1080/03650340.2015.1101519

    Article  Google Scholar 

  21. F. Abbaszadeh Afshar, S. Ayoubi, and A. Jafari, “The extrapolation of soil great groups using multinomial logistic regression at regional scale in arid regions of Iran,” Geoderma 315, 36–48 (2018). https://doi.org/10.1016/j.geoderma.2017.11.030

    Article  Google Scholar 

  22. F. R. Troeh and L. M. Thompson, Soils and Soil Fertility, 6th ed. (Wiley, New York, 2005).

    Google Scholar 

  23. Calcareous Soils: Regional Seminar on Reclamation and Management of Calcareous Soils (UN Food and Agriculture Organization, Rome, 1973).

  24. H. Eswaran, R. Ahrens, T. J. Rice, and B. A. Stewart, Soil Classification: A Global Desk Reference (CRC Press, Boca Raton, FL, 2002). https://doi.org/10.1201/9781420040364

  25. H. Jenny, The Soil Resource: Origin and Behavior (Springer-Verlag, New York, 1980). https://doi.org/10.1007/978-1-4612-6112-4

  26. I. B. Campbell and G. G. C. Claridge, Antarctica: Soils, Weathering Processes and Environment (Elsevier, Amsterdam, 1987).

    Google Scholar 

  27. J. Gilluly, A. C. Waters and A. O. Woodford, Principles of Geology (W.H. Freeman, San Francisco, 1959).

    Google Scholar 

  28. Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies, Ed. by J. A. Zinck, G. Metternicht, G. Bocco, and H. F. Del Valle (Springer-Verlag, New York, 2016). https://doi.org/10.1007/978-3-319-19159-1

  29. J. F. Shroder, Natural Resources in Afghanistan: Geographic and Geologic Perspectives on Centuries of Conflict (Elsevier, Amsterdam, 2014).

    Google Scholar 

  30. J. Hans, Factors of Soil Formation: A System of Quantitative Pedology (McGraw-Hill, New York, 1994).

    Google Scholar 

  31. K. D. Sharma, H. P. Singh, and O. P. Pareek, “Rainwater infiltration into a bare loamy sand,” Hydrol. Sci. J. 28 (3), 417–424 (1983). https://doi.org/10.1080/02626668309491980

    Article  Google Scholar 

  32. L. Deharveng, “Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France),” Conserv. Biol. 10 (1), 74–84 (1996). https://doi.org/10.1046/j.15231739.1996.10010074.x

    Article  Google Scholar 

  33. M. Zeraatpisheh, S. Ayoubi, A. Jafari, and P. Finke, “Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semiarid region in Iran,” Geomorphology 285, 186–204 (2017). https://doi.org/10.1016/j.geomorph.2017.02.015

    Article  Google Scholar 

  34. M. A. Abdelfattah and S. A. Shahid, “A comparative characterization and classification of soils in Abu Dhabi coastal area in relation to arid and semiarid conditions using USDA and FAO soil classification systems,” Arid Land Res. Manage. 21 (3), 245–271 (2007). https://doi.org/10.1080/15324980701426314

    Article  Google Scholar 

  35. M. P. Smith, A. X. Zhu, J. E. Burt, and C. Stiles, “The effects of DEM resolution and neighborhood size on digital soil survey,” Geoderma 137 (1), 58–69 (2006). https://doi.org/10.1016/j.geoderma.2006.07.002

    Article  Google Scholar 

  36. M. Z. Salem and F. D. Hole, “Soil geography and factors of soil formation in Afghanistan,” Soil Sci. 107 (4), 289–295 (1969). https://doi.org/10.1097/00010694-196904000-00009

    Article  Google Scholar 

  37. P. Borrelli, P. Panagos, C. Ballabio, E. Lugato, M. Weynants, and L. Montanarella, “Towards a pan-European assessment of land susceptibility to wind erosion,” Land Degrad. Dev. 27 (4), 1093–1105 (2014). https://doi.org/10.1002/ldr.2318

    Article  Google Scholar 

  38. P. A. Burrough, “Opportunities and limitations of GIS-based modeling of solute transport at the regional scale,” in Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone, SSSA Special Publications vol. 48 (Soil Science Society of America, Madison, WI, 1996), pp. 19–38. https://doi.org/10.2136/sssaspecpub48.c2

  39. P. Panagos, A. Imeson, et al., “Soil conservation in Europe: wish or reality?” Land Degrad. Dev. 27 (6), 1547–1551 (2016). https://doi.org/10.1002/ldr.2538

    Article  Google Scholar 

  40. P. Krasilnikov, V. Sidorova, and I. Dubrovina, “Soil-geographical regionalization as a basis for digital soil mapping: Karelia case study,” Eurasian Soil Sci. 43, 1422–1429 (2010). https://doi.org/10.1134/S1064229310130028

    Article  Google Scholar 

  41. R. Favre and G. M. Kamal, Watershed Atlas of Afghanistan (Ministry of Irrigation, Water Resources and Environment, Kabul, 2004).

    Google Scholar 

  42. R. John, J. W. Dalling, K. E. Harms, et al., “Soil nutrients influence spatial distributions of tropical tree species,” Proc. Natl. Acad. Sci. U.S.A. 104 (3), 864–869 (2007). https://doi.org/10.1073/pnas.0604666104

    Article  Google Scholar 

  43. R. Taghizadeh-Mehrjardi, F. Sarmadian, B. Minasny, J. Triantafilis, and M. Omid, “Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran,” Arid Land Res. Manage. 28 (2), 147–168 (2014). https://doi.org/10.1080/15324982.2013.828801

    Article  Google Scholar 

  44. R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote Sens. Environ. 37 (1), 35–46 (1991). https://doi.org/10.1016/00344257(91)90048-B

    Article  Google Scholar 

  45. Soil Survey Staff, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (US Department of Agriculture, Washington, DC, 1999).

    Google Scholar 

  46. S. Tajik, S. Ayoubi, and F. Nourbakhsh, “Prediction of soil enzymes activity by digital terrain analysis: comparing artificial neural network and multiple linear regression models,” Environ. Eng. Sci. 29 (8), 798–806 (2012). https://doi.org/10.1089/ees.2011.0313

    Article  Google Scholar 

  47. S. Z. Hashami, PhD Thesis (Purdue University, West Lafayette, IN 2011).

  48. Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice (Springer-Verlag, New York, 1974).

    Google Scholar 

  49. Z. Zolfaghari, S. Ayoubi, and M. R. Mosaddeghi, “Spatial variability of some soil shrinkage indices in hilly calcareous region of western Iran,” Soil Tillage Res. 150, 180–191 (2015). https://doi.org/10.1016/j.still.2015.01.016

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial assistance provided by the World Bank under the Higher Education Development Program (HEDP). The authors also thank the Department of Statistics and GIS, Ministry of Agriculture, Irrigation, and Livestock (MAIL), Afghanistan, for providing secondary data.

Funding

This research was funded by the World Bank under the Higher Education Development Program (HEDP), grant number P146184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emal Wali.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emal Wali, Tasumi, M. & Shinohara, Y. Classification and Digital Mapping of Soils in a Semiarid Region of Afghanistan. Eurasian Soil Sc. 54, 38–48 (2021). https://doi.org/10.1134/S1064229321010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321010142

Keywords:

Navigation