Skip to main content

Advertisement

Log in

Review of climate change impacts on predicted river streamflow in tropical rivers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Tropical regions are characterized by hydrological extreme events, which are likely to be exacerbated by climate change. Therefore, quantifying the extent to which climate change may damage a hydrological system becomes crucial. This paper aims to evaluate the findings from previous research on projected impacts of climate change on hydrological systems located in regions bounded by the Tropic of Cancer and the Tropic of Capricorn. It intends to provide an in-depth understanding of the climatic conditions, applied approaches, climate change impacts on future streamflow, and measures to reduce prediction uncertainty in the tropics. The review revealed that there is a significant variation in the magnitude of climate change impacts on streamflow in the tropics. The reason for the inconsistent trend prediction is that projections are heavily dependent on the trajectory of greenhouse gas emissions, climate model structural differences, and uncertainty of downscaling methods and hydrological models. Therefore, to minimize the uncertainty and maximize confidence in streamflow projections, it is essential to apply multi-member model ensembles and to clarify the adaptation strategy (coping, adjusting, or transforming).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Institute of Electrical and Electronics Engineers

  2. American Society of Civil Engineers

References

  • Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), 1–16.

    Google Scholar 

  • Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin , Ethiopia. Hydrological Processes, 23(26), 3661–3669.

    Google Scholar 

  • Acker, J., Soebiyanto, R., Kiang, R., & Kempler, S. (2014). Use of the NASA Giovanni data system for geospatial public health research: example of weather-influenza connection. ISPRS International Journal of Geo-Information, 3(4), 1372–1386.

    Google Scholar 

  • Adler, R. F., Gu, G., Wang, J. J., Huffman, G. J., Curtis, S., & Bolvin, D. (2008). Relationships between global precipitation and surface temperature on interannual and longer timescales (1979-2006). Journal of Geophysical Research-Atmospheres, 113(D22), 1976–2006.

    Google Scholar 

  • Aissia, M. A., Chebana, F., Ouarda, T. B. M. J., Roy, L., Desrochers, G., Chartier, I., & Robichaud, É. (2012). Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Québec, Canada. Hydrological Processes, 26(1), 130–142.

    Google Scholar 

  • Almazroui, M., Islam, M. N., Saeed, F., & Alkhalaf, A. K. (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmospheric Research, 194, 202–213.

    Google Scholar 

  • Amin, M. Z. M., Shaaban, A. J., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q., & Jang, S. (2017). Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 575, 12–22.

    CAS  Google Scholar 

  • Andersson, L., Wilk, J., Todd, M. C., Hughes, D. A., Earle, A., Kniveton, D., et al. (2006). Impact of climate change and development scenarios on flow patterns in the Okavango River. Journal of Hydrology, 331(1-2), 43–57.

    Google Scholar 

  • Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., & Dutta, S. (2015). Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of Hydrology, 527, 281–291.

    CAS  Google Scholar 

  • Arnell, N. W. (1999). A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217(3-4), 314–335.

    Google Scholar 

  • Arnell, N. W., Hudson, D. A., & Jones, R. G. (2003). Climate change scenarios from a regional climate model : Estimating change in runoff in southern Africa. Journal of Geophysical Research-Atmospheres, 108(D16), 4519.

    Google Scholar 

  • Ashofteh, P. S., Bozorg-Haddad, O., & Mariño, M. A. (2013). Scenario assessment of streamflow simulation and its transition probability in future periods under climate change. Water Resources Management, 27(1), 255–274.

    Google Scholar 

  • Ashofteh, P. S., Bozorg-Haddad, O., Loáiciga, H. A., Asce, F., & Mariño, M. A. (2016). Evaluation of the impacts of climate variability and human activity on streamflow at the basin scale. Journal of Irrigation and Drainage Engineering. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001038.

    Google Scholar 

  • Asokan, S. M., & Dutta, D. (2008). Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrological Processes, 22(18), 3589–3603.

    Google Scholar 

  • Beyene, T., Lettenmaier, D. P., & Kabat, P. (2010). Hydrologic impacts of climate change on the Nile River Basin : implications of the 2007 IPCC scenarios. Climatic Change, 100(3-4), 433–461.

    Google Scholar 

  • Bhend, J., Watterson, I., Grose, M., Ekstrӧm, M., & Whetton, P. (2015). Climate change projection methods. In Ekstrӧm, M., Gerbing, C., Grose, M., Bhend, J., Webb, L., & Risbey, J. (Eds.), Climate change in Australia, 78-88.

  • Booij, M. J., Tollenaar, D., Van Beek, E., & Kwadijk, J. C. J. (2011). Simulating impacts of climate change on river discharges in the Nile basin. Physics and Chemistry of the Earth, 36(13), 696–709.

    Google Scholar 

  • Buytaert, W., Ce, R., & Timbe, L. (2009). Predicting climate change impacts on water resources in the tropical Andes : Effects of GCM uncertainty. Geophysical Research Letters, 36(7), 1–5.

    Google Scholar 

  • Camici, S., Brocca, L., Melone, F., & Moramarco, T. (2014). Impact of Climate Change on Flood Frequency Using Different Climate Models and Downscaling Approaches. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000959.

    Google Scholar 

  • Chen, J., Brissette, P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49(7), 4187–4205.

    Google Scholar 

  • Dang, T. C., Cochrane, T. A., Arias, M. E., Van, P. D. T., & De Vries, T. T. (2016). Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrological Processes, 30(21), 3824–3838.

    Google Scholar 

  • De Sales, F., & Xue, Y. (2010). Assessing the dynamic-downscaling ability over SOuth America using the intensity-scale verification technique. International Journal of Climatology, 31(8), 1205–1221.

    Google Scholar 

  • Dessu, S. B., & Melesse, A. M. (2013). Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya / Tanzania. Hydrological Processes, 27(20), 2973–2986.

    Google Scholar 

  • Devi, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A Review on Hydrological Models. Aquatic Procedia. 4(Icwrcoe), 1001-1007.

  • Dezetter, A., Servat, E., Paturel, J. E., Mahé, G., & Dieulin, C. (2009). Using general circulation model outputs to assess impacts of climate change on runoff for large hydrological catchments in West Africa. Hydrological Sciences Journal, 54(1), 77–89.

    Google Scholar 

  • Duan, J. G., Bai, Y., Dominguez, F., Rivera, E., & Meixner, T. (2017). Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River. Journal of Hydrology, 549, 194–207.

    Google Scholar 

  • Duong, N., Gourbesville, P., Tue, M., & Srivatsan, V. (2016). A deterministic hydrological approach to estimate climate change impact on river flow : Vu Gia – Thu Bon catchment, Vietnam. Journal of Hydro-Environment Research, 11, 59–74.

    Google Scholar 

  • Edelman, A., Gelding, A., Konovalov, E., McComiskie, R., Penny, A., Roberts, N., Templeman, S., et al. (2014). State of the Tropics 2014 report. Report. James Cook University, Cairns.

  • Elshamy, M. E., Seierstad, I. A., & Sorteberg, A. (2009). Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrology and Earth System Sciences, 13, 551–565.

    Google Scholar 

  • Estrup, H., Kronvang, B., Larsen, S. E., Christian, C., Strange, T., & Koch, E. (2006). Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 365(1-3), 223–237.

    Google Scholar 

  • Feng, X., Porporato, A., & Rodriguez-iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811–815.

    Google Scholar 

  • Fowler, H. J., & Kilsby, C. G. (2007). Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change, 80(3-4), 337–367.

    Google Scholar 

  • Gebremichael, M., & Hossain, F. (2010). Satellite rainfall applications for surface hydrology. Dordrecht: Springer.

    Google Scholar 

  • Geiger, R. (1954). Kassifikation der klimate nach W. Köppen (Classification of climates after W. Köppen). In: Landolt-Börnstein-Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 3, Springer: Berlin, 603–607.

  • Githui, F., Gitau, W., & Bauwens, W. (2009). Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology, 29(12), 1823–1834.

    Google Scholar 

  • Gopal, B. (2013). Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquatic Sciences, 75(1), 39–61.

    Google Scholar 

  • Graham, L. P., Andréasson, J., & Carlsson, B. (2007). Assessing climate change impacts on hydrology from an ensemble of regional climate models , model scales and linking methods–a case study on the Lule River basin. Climatic Change, 81(1), 293–307.

    Google Scholar 

  • Gu, G., Adler, R. F., Huffman, G. J., & Curtis, S. (2007). Tropical Rainfall Variability on Interannual-to-Interdecadal and Longer Time Scales Derived from the GPCP Monthly Product. Journal of Climate, 20, 4033–4046.

    Google Scholar 

  • Helfer, F., Lemchert, C., & Zhang, H. (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 475, 365–378.

    Google Scholar 

  • Herawati, H. (2015). Impact of Climate Change on Streamflow in the Tropical Lowland of Kapuas River , West Borneo, Indonesia. Procedia Engineering, 125, 185–192.

    Google Scholar 

  • Huang, S., Hattermann, F. F., Krysanova, V., & Bronstert, A. (2013). Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 116(3-4), 631–663.

    Google Scholar 

  • IPCC, Special Report of Working Group III of the Intergovernmental Panel on Climate Change (2000). Special Report on Emission Scenarios (SRES). IPCC, Cambridge University Press, Cambridge.

  • IPCC, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge, pp 104.

  • IPCC, Contribution of Working Groups I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, 109-113.

  • IPCC, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Synthesis Report. IPCC, Geneva, Switzerland: Cambridge University Press, Cambridge, pp 151.

  • Islam, A., Sikka, A. K., Saha, B., & Singh, A. (2012). Streamflow Response to Climate Change in the Brahmani River Basin, India. Water Resources Management, 26(6), 1409–1424.

    Google Scholar 

  • Jahandideh-Tehrani, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2015). Hydropower Reservoir Management Under Climate Change : The Karoon Reservoir System. Water Resources Management, 29(3), 749–770.

    Google Scholar 

  • Kabiri, R., Bai, V. R., & Chan, A. (2015). Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed , Malaysia. Environmental Earth Sciences, 73(1), 27–37.

    Google Scholar 

  • Kankam-Yeboah, K., Obuobie, E., Amisigo, B., Kankam-Yeboah, K., Obuobie, E., Amisigo, B., & Opoku-ankomah, Y. (2017). Impact of climate change on streamflow in selected river basins in Ghana Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58(4), 773–788.

    Google Scholar 

  • Kara, F., & Yucel, I. (2015). Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Environmental Monitoring and Assessment, 187(9), 1–18.

    Google Scholar 

  • Karandish, F., Mousavi, S. S., & Tabari, H. (2016). Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran : analyzing the probable effects on cereal water-use efficiency. Stochastic Environmental Research and Risk Assessment, 31(8), 2121–2146.

    Google Scholar 

  • Khoi, D. N., & Suetsugi, T. (2012). Uncertainty in climate change impacts on streamflow in Be River Catchment, Vietnam. Water Environment Journal, 26(4), 530–539.

    Google Scholar 

  • Khoi, D. N., & Suetsugi, T. (2014). The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrological Processes, 28(3), 640–652.

    Google Scholar 

  • Kim, U., & Kaluarachchi, J. J. (2009). Climate change impacts on water resource in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association, 45(6), 1361–1378.

    Google Scholar 

  • Latrubesse, E. M., Stevaux, J. C., & Sinha, R. (2005). Tropical rivers. Geomerphology, 70(3-4), 187–206.

    Google Scholar 

  • Leander, R., & Buishand, T. A. (2007). Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332(3-4), 487–496.

    Google Scholar 

  • Li, F., Zhang, Y., Xu, Z., Teng, J., Liu, C., & Liu, W. (2013). The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505, 188–201.

    Google Scholar 

  • Li, J., Evans, J., Johnson, F., & Sharma, A. (2017). A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM. Journal of Hydrology, 547, 413–427.

    Google Scholar 

  • Masood, M., & Takeuchi, K. (2016). Climate change impacts and its implications on future water resource management in the Meghna Basin. Futures, 78-79, 1–18.

    Google Scholar 

  • Masood, M., Yeh, P., Hanasaki, N., & Takeuchi, K. (2015). Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin. Hydrology and Earth System Sciences, 19(2), 747–770.

    Google Scholar 

  • Maurer, E. P. (2007). Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California , under two emissions scenarios. Climatic Change, 82(3-4), 309–325.

    Google Scholar 

  • Maurer, E. P. (2009). Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrology and Earth System Sciences, 13, 183–194.

    Google Scholar 

  • Mc Gregor, G. R., & Nieuwolt, S. (1998). Tropical climatology: an introduction to the climates of the low latitudes. New YorK: John Wiley & Sons.

    Google Scholar 

  • Mehr, A. D., & Kahya, E. (2017). Climate Change Impacts on Catchment-Scale Extreme Rainfall Variability : Case Study of Rize Province, Turkey. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001477.

    Google Scholar 

  • Menzel, L., & Bu, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). Journal of Hydrology, 267(1-2), 53–64.

    Google Scholar 

  • Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C. J., Lang, H., et al. (2001). Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change, 49(1-2), 105–128.

    CAS  Google Scholar 

  • Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6), 693–712.

    Google Scholar 

  • Mohor, G. S., Rodriguez, D. A., Tomasella, J., & Junior, J. L. S. (2015). Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, 4(Part B), 41–59.

    Google Scholar 

  • Montenegro, A., & Ragab, R. (2010). Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: a modelling study. Hydrological Processes, 24(19), 2705–2723.

    Google Scholar 

  • Narsimlu, B., Gosain, A. K., & Chahar, B. R. (2013). Assessment of future climate change impacts on water resources of Upper Sind River Basin , India using SWAT model. Water Resources Management, 27(10), 3647–3662.

    Google Scholar 

  • Needham, H. F., Keim, B. D., & Sathiaraj, D. (2015). A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Reviews of Geophysics, 53(2), 545–591.

    Google Scholar 

  • Nobrega, M. T., Collischonn, W., Tucci, C. E. M., & Paz, A. R. (2011). Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15(2), 585–595.

    Google Scholar 

  • Onyutha, C., Tabari, H., Rutkowska, A., & Nyeko-ogiramoi, P. (2016). Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. Journal of Hydro-environment Research, 12, 31–45.

    Google Scholar 

  • Ouyang, F., Zhu, Y., & Fu, G. (2015). Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment, 29(7), 1781–1795.

    Google Scholar 

  • Pattnayak, K. C., Kar, S. C., Dalal, M., & Pattnayak, R. K. (2017). Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Global and Planetary Change, 152, 152–166.

    Google Scholar 

  • Pechlivanidi, I. G., Jackson, B. M., Mcintyre, N. R., & Wheater, H. S. (2011). Catchment scale hydrological modelling: a review of model types, calibration appraoches and uncertaintity analysis methods in the context of recent developments in technology and applications. Global NEST Journal, 13(3), 193–214.

    Google Scholar 

  • Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.

    Google Scholar 

  • Petheram, C., Rustomji, P., McVicar, T. R., Cai, W., Chiew, F. H. S., Vleeshouwer, J., Van Niel, T. G., Li, L. T., Cresswell, R. G., Dnohue, R. J., Teng, J., & Perraud, J. M. (2012). Estimating the impact of projected climate change on runoff across the tropical Savannas and semiarid rangelands of Northern Australia. American Meteorological Society, 13, 483–503.

    Google Scholar 

  • Phan, D. B., Wu, C. C., & Hsieh, S. C. (2011). Impact of climate change on stream discharge and sediment yield in Northern Vietnam. Water Resources, 38(6), 827–836.

    CAS  Google Scholar 

  • Pichuka, S., Prasad, R., Maity, R., & Kunstmann, H. (2017). Development of a method to identify change in the pattern of extreme streamflow events in future climate : Application on the Bhadra reservoir inflow in India. Journal of Hydrology: Regional Studies, 9, 236–246.

    Google Scholar 

  • Pilling, C. G., & Jones, J. A. A. (2002). The impact of future climate change on seasonal discharge , hydrological processes and extreme flows in the Upper Wye experimental catchment, mid-Wales. Hydrological Processes, 16(6), 1201–1213.

    Google Scholar 

  • Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2012). Assessment of future streamflow over the Sesan catchment of the Lower Mekong Basin in Vietnam. Hydrological Processes, 26(24), 3661–3668.

    Google Scholar 

  • Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2017). Ensemble climate projections of mean and extreme rainfall over Vietnam. Global and Planetary Change, 148, 96–104.

    Google Scholar 

  • Rana, A., Foster, K., Bosshard, T., Olsson, J., & Bengtsson, L. (2014). Impact of climate change on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model projections. Journal of Hydrology: Regional Studies, 1, 107–128.

    Google Scholar 

  • Raneesh, K. Y., & Santosh, G. T. (2017). A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrological Sciences Journal, 56(6), 946–965.

    Google Scholar 

  • Ranger, N., Hallegatte, S., Bhattacharya, S., Bachu, M., Priya, S., Dhore, K., et al. (2011). An assessment of the potential impact of climate change on flood risk in Mumbai. Climatic Change, 104(1), 139–167.

    Google Scholar 

  • Räty, O., Räisänen, J., Ylhäisi, S., & J. (2014). Evaluation of delta and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Climate Dynamics, 42(0-10), 2287–2303.

    Google Scholar 

  • Rui, H., Teng, W. L., Vollmer, B., Mocko, D. M., Beaudoing, H. K., & Rodell, M. (2011). NASA Giovanni portals for NLDAS/GLDAS online visualization, analysis, and intercomparison. NASA Technical Report. https://ntrs.nasa.gov/search.jsp?R=20140009183. Accessed 12 Sept 2019.

  • Santer, B. D., Wigley, T. M. L., Mears, C., Wentz, F. J., Klein, S. A., Seidel, D. J., Taylor, K. E., et al. (2005). Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 1551–1556.

    CAS  Google Scholar 

  • Schlesinger, M. E. (1983). A review of climate model simulations of CO2 induced-warming. International Journal of Environmental Studies, 20(2), 103–114.

    CAS  Google Scholar 

  • Setegn, S. G., Rayner, D., Melesse, A. M., & Dargahi, B. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin , Ethiopia. Water Resources Research, 47, 1–13.

    Google Scholar 

  • Shaaban, A. J., Amin, M. Z. M., Chen, Z. Q., & Ohara, N. (2011). Regional modeling of climate change impact on Peninsular Malaysia water resources. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000305.

    Google Scholar 

  • Shahvari, N., Khalilian, S., Mosavi, S. H., & Mortazavi, S. A. (2019). Assessing climate change impacts on water resources and crop yield: a case study of Varamin plain basin, Iran. Environmental Monitoring and Assessment, 191, 1–12. https://doi.org/10.1007/s10661-019-7266-x.

    Article  Google Scholar 

  • Sharma, D., & Babel, M. S. (2013). Application of downscaled precipitation for hydrological climate-change impact assessment in the upper Ping River Basin of Thailand. Climate Dynamics, 41(9-10), 2589–2602.

    Google Scholar 

  • Shrestha, S., Shrestha, M., & Babel, M. S. (2016). Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin , Nepal. Environmental Earth Sciences, 75(4), 1–13.

    Google Scholar 

  • Singh, R., Arya, D. S., Taxak, A. K., & Vojinovic, Z. (2016). Potential impact of climate change on rainfall intensity-duration-frequency curves in Roorkee, India. Water Resources Management, 30(13), 4603–4616.

    Google Scholar 

  • Sood, A., Muthuwatta, L., & Mccartney, M. (2017). A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water International, 38(3), 297–311.

    Google Scholar 

  • Sorribas, M. V., Paiva, R. C. D., Melack, J. M., Bravo, J. M., Jones, C., Carvalho, L., et al. (2016). Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 136(3-4), 555–570.

    CAS  Google Scholar 

  • Syvitski, J. P. M., Cohen, S., Kettner, A. J., & Brakenridge, G. R. (2014). How important and different are tropical rivers ? — An overview. Geomorphology, 227, 5–17.

    Google Scholar 

  • Tan, M. L., Ibrahim, A. L., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research, 189, 1–10.

    Google Scholar 

  • Tang, Q., Gao, H., Lu, H., & Lettenmaier, D. P. (2009). Remote sensing: hydrology. Progress in Physical Geography, 33(4), 490–509.

    Google Scholar 

  • Taye, M. T., Ntegeka, V., Ogiramoi, N. P., Willems, P., Leuven, U., & Division, H. (2011). Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrology and Earth System Sciences, 15, 209–222.

    Google Scholar 

  • Teferi, M., Willems, P., & Block, P. (2015). Implications of climate change on hydrological extremes in the Blue Nile basin : a review. Journal of Hydrology: Regional Studies, 4, 280–293.

    Google Scholar 

  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies : review and evaluation of different methods. Journal of Hydrology, 456-457, 12–29.

    Google Scholar 

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5–31.

    Google Scholar 

  • Vecchi, G. A., & Soden, B. J. (2007). Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450(7172), 1066–1070.

    CAS  Google Scholar 

  • Viola, M. R., de Mello, C. R., Chou, S. C., Yanagi, S. N., & Gomes, J. L. (2015). Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil. International Journal of Climatology, 35(6), 1054–1068.

    Google Scholar 

  • Vuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 3885–3888.

    Google Scholar 

  • Wang, Z., Ficklin, D. L., Zhang, Y., & Zhang, M. (2012). Impact of climate change on stream fl ow in the arid Shiyang River Basin of northwest China. Hydrological Processes, 26(18), 2733–2744.

    Google Scholar 

  • Wang, D., Hagen, S. C., & Alizad, K. (2013). Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida. Journal of Hydrology, 480, 125–135.

    Google Scholar 

  • Watanabe, S., Kanae, S., Seto, S., Yeh, P. J., Hirabayashi, Y., & Oki, T. (2012). Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research-Atmospheres, 117(D23), 1–13.

    Google Scholar 

  • Wentz, F. J., Ricciardulli, L., Hilburn, K., & Mears, C. (2007). How much more rain will global warming bring? Science, 317(5835), 233–235.

    CAS  Google Scholar 

  • Wood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. (2002). Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research-Atmospheres, 107(D20).

  • Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1-3), 189–216.

    Google Scholar 

  • Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D. P., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. International Journal of Geophysical Research Atmospheres. https://doi.org/10.1029/2011JD016048.

    Google Scholar 

  • Yu, Z., Gu, H., Wang, J., Xia, J., & Lu, B. (2017). Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stochastic Environmental Research and Risk Assessment, 32(1), 1–16.

    Google Scholar 

Download references

Funding

Funding for this project has been provided by Griffith University Postgraduate Research School through the GUPRS scholarship, and Griffith University International Postgraduate Research School through the GUIPRS scholarship.

Supplemental Data

No data, models, or code were generated or used during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Jahandideh-Tehrani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahandideh-Tehrani, M., Zhang, H., Helfer, F. et al. Review of climate change impacts on predicted river streamflow in tropical rivers. Environ Monit Assess 191, 752 (2019). https://doi.org/10.1007/s10661-019-7841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7841-1

Keywords

Navigation