Skip to main content

Advertisement

Log in

Investigating runoff formation dynamics: field observations at Cape Fear experimental plot

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, we explore the dynamics of surface runoff formation in an outdoor experimental plot, Cape Fear, by reporting the relationships among rainfall, runoff, and soil moisture for 101 rainfall-runoff events observed in the time span of more than five years (January 2014–March 2019). Cape Fear is a recently developed 7 × 7 m2 experimental plot that combines features from both small scale facilities and catchment-scale experimental hillslopes, thus leveraging observation of major hydrological variables at high temporal and spatial resolution. Despite the small dimension and simplicity of the plot, the relations among hydrological variables are unexpectedly quite spread. Experimental results seem to suggest that Cape Fear runoff response presents an increasing and non-linear relationship with rainfall, with a surface runoff coefficient increasing for higher rainfall. Direct runoff apparently increases with soil moisture, while initial abstraction seems not to be influenced by rainfall and is found to decrease with increasing soil moisture. Observations suggest that complex interactions between soil moisture conditions and rainfall pattern properties modulate the plot response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachmair, S., & Weiler, M. (2011). New dimensions of hillslope hydrology. In D. F. Levia et al. (Eds.), Forest hydrology and biogeochemistry: synthesis of past research and future directions. Ecological Studies (p. 216).

    Google Scholar 

  • Dusek, J., & Vogel, T. (2016). Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow. Journal of Hydrology, 534, 590–605.

    Article  Google Scholar 

  • Fu, C., Chen, J., Dong, L., & Jiang, H. (2012). Field investigation and modeling of runoff generation in a granitic catchment in Zhuhai, China. Journal of Hydrology, 458-459, 87–102.

    Article  Google Scholar 

  • Gomi, T., Sidle, R. C., Ueno, M., Miyata, S., & Kosugi, K. (2008). Characteristics of overland flow generation on steep forested hillslopes of central Japan. Journal of Hydrology, 361(3–4), 275–290.

    Article  Google Scholar 

  • Graham, C. B., & McDonnell, J. J. (2010). Hillslope threshold response to rainfall: (2) development and use of a macroscale model. Journal of Hydrology, 393, 77–93.

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., & Serinaldi, F. (2012a). A continuous simulation model for design-hydrograph estimation in small and ungauged watersheds. Hydrological Sciences Journal, 57(6), 1035–1051.

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., & Serinaldi, F. (2012b). Design hydrograph estimation in small and ungauged watersheds: continuous simulation method versus event-based approach. Hydrological Processes, 26(20), 3124–3134.

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., Arcangeletti, E., & Nardi, F. (2013). Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modelling. Journal of Hydrology, 487, 39–47.

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., Baldini, L., & Gorgucci, E. (2018). Description and preliminary results of a 100 square meter rain gauge. Journal of Hydrology, 556, 827–834.

    Article  Google Scholar 

  • Han, S., Xu, D., & Wang, S. (2012). Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China. Hydrology and Earth System Sciences, 16(9), 3115–3125.

    Article  Google Scholar 

  • Hrnčíř, M., Šanda, M., Kulasová, A., & Císlerová, M. (2010). Runoff formation in a small catchment at hillslope and catchment scales. Hydrological Processes, 24(16), 2248–2256.

    Article  Google Scholar 

  • James, A. L., & Roulet, N. T. (2007). Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrological Processes, 21, 3391–3408.

    Article  Google Scholar 

  • Janzen, D., & McDonnell, J. J. (2015). A stochastic approach to modelling and understanding hillslope runoff connectivity dynamics. Ecological Modelling, 298, 64–74.

    Article  Google Scholar 

  • Li, X., Niu, J. Z., Li, J., Xie, B. Y., Han, Y. N., Tan, J. P., & Zhang, Y. H. (2012). Characteristics of runoff and sediment generation of forest vegetation on a hill slope by use of artificial rainfall apparatus. Journal of Forestry Research, 23(3), 419–424.

    Article  CAS  Google Scholar 

  • Li, Y., Li, X., & Li, G. (2015). Runoff coefficient characteristics and its dominant influence factors of the riparian Myricaria squamosa Desv. shrubs over Qinghai Lake basin, NE Qinghai-Tibet Plateau. Arabian Journal of Geosciences, 8(9), 6655–6666.

    Article  CAS  Google Scholar 

  • Martínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., & Poesen, J. (2013). Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: a review. Catena, 106, 101–112.

    Article  Google Scholar 

  • Mayerhofer, C., Meißl, G., Klebinder, K., Kohl, B., & Markart, G. (2017). Comparison of the results of a small-plot and a large-plot rainfall simulator – effects of land use and land cover on surface runoff in Alpine catchments. Catena, 156, 184–196.

    Article  Google Scholar 

  • Nathan, R. J., & McMahon, T. A. (1990). Evaluation of automated techniques for baseflow and recession analysis. Water Resources Research, 26(7), 1465–1473.

    Article  Google Scholar 

  • NRCS - Natural Resources Conservation Service. (2008). Part 630 hydrology, National Engineering handbook. Washington D.C: U.S. Department of Agriculture.

    Google Scholar 

  • Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M., & Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702.

    Article  Google Scholar 

  • Penna, D., van Meerveld, H. J., Oliviero, O., Zuecco, G., Assendelft, R. S., Dalla Fontana, G., & Borga, M. (2015). Seasonal changes in runoff generation in a small forested mountain catchment. Hydrological Processes, 29(8), 2027–2042.

    Article  Google Scholar 

  • Petroselli, A., & Tauro, F. (2018). Cape Fear: monitoring basic hydrological processes in an outdoor hillslope plot. Environmental Monitoring and Assessment, 189(3), 132.

    Article  Google Scholar 

  • Petroselli, A., Leone, A., Ripa, M. N., & Recanatesi, F. (2014). Linking phosphorus export and hydrologic modeling: a case study in Central Italy. Environmental Monitoring and Assessment, 186(11), 7849–7861.

    Article  CAS  Google Scholar 

  • Rallison, R. E. (1980). Origin and evolution of the SCS runoff equation. Proc. ASCE Irrigation and Drainage Div. Symp. on Wathershed Management (Vol. II, pp. 912–924). New York: ASCE.

    Google Scholar 

  • Recanatesi, F., Petroselli, A., Ripa, M. N., & Leone, A. (2017). Assessment of stormwater runoff management practices and BMPs under soil sealing: a study case in a peri-urban watershed of the metropolitan area of Rome (Italy). Journal of Environmental Management, 201, 6–18.

    Article  Google Scholar 

  • Sarkar, R., Dutta, S., & Dubey, A. K. (2015). An insight into the runoff generation processes in wet sub-tropics: field evidences from a vegetated hillslope plot. Catena, 128, 31–43.

    Article  Google Scholar 

  • Scherrer, S., Naef, F., Fach, A. O., & Cordery, I. (2007). Formation of runoff at the hillslope scale during intense rainfall. Hydrology and Earth System Sciences, 11(2), 907–922.

    Article  Google Scholar 

  • Schneider, P., Pool, S., Strouhal, L., & Seibert, J. (2014). True colors-experimental identification of hydrological processes at a hillslope prone to slide. Hydrology and Earth System Sciences, 18(2), 875–892.

    Article  Google Scholar 

  • Schoener, G., & Stone, M. C. (2019). Impact of antecedent soil moisture on runoff from a semiarid catchment. Journal of Hydrology, 569, 627–636.

    Article  Google Scholar 

  • Serinaldi, F., & Grimaldi, S. (2011). Synthetic design hydrographs based on distribution functions with finite support. Journal of Hydrologic Engineering, 16(5), 434–446.

    Article  Google Scholar 

  • Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T. (1995). Seasonal hydrologic response at various spatial scales in a small forested catchment, Hitachi-Ohta, Japan. Journal of Hydrology, 168, 227–250.

    Article  Google Scholar 

  • Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., & Shimizu, T. (2000). Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm. Hydrological Processes, 14, 369–385.

    Article  Google Scholar 

  • Steenhuis, T. S., Hrnčíř, M., Poteau, D., Luna, E. J. R., Tilahun, S. A., Caballero, L. A., Guzman, C. D., Stoof, C. R., Sanda, M., Yiteferu, B., & Cislerova, M. (2013). A saturated excess runoff pedotransfer function for vegetated watersheds. Vadose Zone Journal, 12.

  • Tauro, F., Grimaldi, S., Petroselli, A., Rulli, M. C., & Porfiri, M. (2012). Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope. Hydrology and Earth System Sciences, 16(8), 2973–2983.

    Article  Google Scholar 

  • Tauro, F., Petroselli, A., Fiori, A., Romano, N., Rulli, M. C., Porfiri, M., Palladino, M., & Grimaldi, S. (2018). Cape Fear - a hybrid hillslope plot for monitoring hydrological processes. Hydrology, 4, 35.

    Article  Google Scholar 

  • Templeton, R. C., Vivoni, E. R., Méndez-Barroso, L. A., Pierini, N. A., Anderson, C. A., Rango, A., Laliberte, A. S., & Scott, R. L. (2014). High-resolution characterization of a semiarid watershed: implications on evapotranspiration estimates. Journal of Hydrology, 509, 306–319.

    Article  Google Scholar 

  • Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resources Research, 42, W02410.

    Google Scholar 

  • Van Meerveld, I. T., & McDonnell, J. J. (2005). Comment to spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrolological processes, J. Hydrol., 286, 113–134. Journal of Hydrology, 303, 307–312.

    Article  Google Scholar 

  • Wang, Y., You, W., Fan, J., Xin, M., Wei, X., & Wang, Q. (2018). Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil. Catena, 170, 100–107.

    Article  Google Scholar 

  • Woodward, D. E., Hoeft, C. C., Hawkins, R. H., Van Mullem, J., & Ward, T. J. (2010). Discussion of “Modifications to SCS-CN Method for Long-Term Hydrologic Simulation” by K. Geetha, S. K. Mishra, T. I. Eldho, A. K. Rastogi, and R. P. Pandey. Journal of Irrigation and Drainage Engineering, 136(6), 444–446.

    Article  Google Scholar 

  • Zehe, E., Graeff, T., Morgner, M., Bauer, A., & Bronstert, A. (2010). Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains. Hydrology and Earth System Sciences, 14, 873–889.

    Article  Google Scholar 

  • Zhao, N., Yu, F., Li, C., Zhang, L., Liu, J., Mu, W., & Wang, H. (2015). Soil moisture dynamics and effects on runoff generation at small hillslope scale. Journal of Hydrologic Engineering, 20(7), 05014024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Petroselli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petroselli, A., Tauro, F. & Grimaldi, S. Investigating runoff formation dynamics: field observations at Cape Fear experimental plot. Environ Monit Assess 191, 642 (2019). https://doi.org/10.1007/s10661-019-7806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7806-4

Keywords

Navigation