Skip to main content
Log in

Effects of drying pretreatments on the analysis of the mercury fraction in sediments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The geochemical fractions of heavy metals in sediments are crucial indexes for their mobility and bioavailability evaluations. However, different drying processes of sediment pretreatment could change metal geochemical fractions, especially for Hg, which is potentially volatile. In this study, the influence of pretreatment methods including oven-drying, air-drying, freeze-drying, and fresh sediments on the analysis of Hg fractions in sediments was investigated. Results showed that remarkable differences of Hg concentration were observed between fresh sediments and dried pretreatment sediments (P < 0.05). Briefly, the concentrations of the water-soluble and human stomach acid–soluble fractions in oven-dried and air-dried sediments generally showed significant increasing trends compared with those in the fresh sediments, while the organo-chelated fraction exhibited significant decreasing trends. The cause of this phenomenon was primarily the oxidation of organic matter, aging process, and the diffusion of Hg into micropores. The significant loss was also observed at elemental Hg fraction due to its volatilization effect. The freeze-drying posed minor influence on changes of Hg fraction analysis compared with oven-drying and air-drying. Moreover, the total Hg concentrations in pretreated sediments showed a decline of varying degrees compared with those in fresh sediments ascribing to the volatilization of elemental Hg. Finally, Pearson correlation analysis further confirmed that freeze-drying could minimize the errors of the Hg fraction analysis in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azad, A. M., Frantzen, S., Bank, M. S., Johnsen, I. A., Tessier, E., Amouroux, D., Madsen, L., & Maage, A. (2019). Spatial distribution of mercury in seawater, sediment, and seafood from the Hardangerfjord ecosystem, Norway. Science of the Total Environment, 667, 622–637.

    Article  CAS  Google Scholar 

  • Baeyens, W., Monteny, F., Leermakers, M., & Bouillon, S. (2003). Evaluation of sequential extractions on dry and wet sediments. Analytical and Bioanalytical Chemistry, 376(6), 890–901.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1992). A brief discussion on the effect of temperature on the reaction of inorganic ions with soil. Journal of Soil Science, 43(1), 37–45.

    Article  CAS  Google Scholar 

  • Black, F. J., Poulin, B. A., & Flegal, A. R. (2012). Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochimica et Cosmochimica Acta, 84, 492–507.

    Article  CAS  Google Scholar 

  • Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233–248.

    Article  CAS  Google Scholar 

  • Bottrell, S. H., Mortimer, R. J., Davies, I. M., Martyn Harvey, S., & Krom, M. D. (2009). Sulphur cycling in organic-rich marine sediments from a Scottish fjord. Sedimentology, 56(4), 1159–1173.

    Article  CAS  Google Scholar 

  • Budianta, W., Fahmi, F. L., & Warmada, I. W. (2019). The distribution and mobility of mercury from artisanal gold mining in river sediments and water, Banyumas, Central Java, Indonesia. Environmental Earth Sciences, 78(3), 90.

    Article  Google Scholar 

  • Cabon, J. Y., Giamarchi, P., & Le Floch, S. (2010). A study of marine pollution caused by the release of metals into seawater following acid spills. Marine Pollution Bulletin, 60(7), 998–1004.

    Article  CAS  Google Scholar 

  • Claff, S. R., Burton, E. D., Sullivan, L. A., & Bush, R. T. (2010). Effect of sample pretreatment on the fractionation of Fe, Cr, Ni, Cu, Mn, and Zn in acid sulfate soil materials. Geoderma, 159(1–2), 156–164.

    Article  CAS  Google Scholar 

  • Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology, 26(1), 96–101.

    Article  Google Scholar 

  • Fernández-Martínez, R., & Rucandio, I. (2013). Assessment of a sequential extraction method to evaluate mercury mobility and geochemistry in solid environmental samples. Ecotoxicology and Environmental Safety, 97, 196–203.

    Article  Google Scholar 

  • Habicht, K. S., & Canfield, D. E. (1997). Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61(24), 5351–5361.

    Article  CAS  Google Scholar 

  • Haitzer, M., Aiken, G. R., & Ryan, J. N. (2003). Binding of mercury (II) to aquatic humic substances: influence of pH and source of humic substances. Environmental Science & Technology, 37(11), 2436–2441.

    Article  CAS  Google Scholar 

  • Hellmann, C., Costa, R. D., & Schmitz, O. J. (2019). How to deal with mercury in sediments? A critical review about used methods for the speciation of mercury in sediments. Chromatographia, 82(1), 125–141.

    Article  CAS  Google Scholar 

  • Huang, G., Chen, Z., Sun, J., Liu, F., Wang, J., & Zhang, Y. (2015). Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Environmental Science and Pollution Research, 22(11), 8367–8374.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., Tessier, A., & Carignan, R. (1998). Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochemistry, 13(2), 213–233.

    Article  CAS  Google Scholar 

  • Jiang, G. B., Shi, J. B., & Feng, X. B. (2006). Mercury pollution in china: an overview of the past and current sources of the toxic metal. Environmental Science & Technology, 15, 3673–3678.

    Google Scholar 

  • Kang, S., Huang, J., Wang, F., Zhang, Q., Zhang, Y., Li, C., Wang, L., Chen, P., Sharma, C. M., Li, Q., Sillanpää, M., Hou, J., Xu, B., & Guo, J. (2016). Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 50(6), 2859–2869.

    Article  CAS  Google Scholar 

  • Klitzke, S., & Lang, F. (2007). Hydrophobicity of soil colloids and heavy metal mobilization. Journal of Environmental Quality, 36(4), 1187–1193.

    Article  CAS  Google Scholar 

  • Kodama, H., & Schnitzer, M. (1977). Effect of fulvic acid on the crystallization of Fe (III) oxides. Geoderma, 19(4), 279–291.

    Article  CAS  Google Scholar 

  • Leopold, K., Foulkes, M., & Worsfold, P. (2010). Methods for the determination and speciation of mercury in natural waters—a review. Analytica Chimica Acta, 663(2), 127–138.

    Article  CAS  Google Scholar 

  • Li, Y., Mao, Y., Liu, G., Tachiev, G., Roelant, D., Feng, X., & Cai, Y. (2010). Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades. Environmental Science & Technology, 44(17), 6661–6666.

    Article  CAS  Google Scholar 

  • Liu, Q., Wang, F., Meng, F., Jiang, L., Li, G., & Zhou, R. (2018). Assessment of metal contamination in estuarine surface sediments from Dongying City, China: use of a modified ecological risk index. Marine Pollution Bulletin, 126, 293–303.

    Article  CAS  Google Scholar 

  • Long, Y. Y., Hu, L. F., Wang, J., Fang, C. R., He, R., Hu, H., & Shen, D. S. (2009). Effect of sample pretreatment on speciation of copper and zinc in MSW. Journal of Hazardous Materials, 168(2–3), 770–776.

    Article  CAS  Google Scholar 

  • Ma, Y., Lombi, E., Nolan, A. L., & McLaughlin, M. J. (2006). Short-term natural attenuation of copper in soils: effects of time, temperature, and soil characteristics. Environmental Toxicology and Chemistry: An International Journal, 25(3), 652–658.

    Article  CAS  Google Scholar 

  • Ma, T., Sheng, Y., Meng, Y., & Sun, J. (2019). Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size. Chemosphere, 225, 83–92.

    Article  CAS  Google Scholar 

  • Machado, A. A. S., Spencer, K., Kloas, W., Toffolon, M., & Zarfl, C. (2016). Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity. Science of the Total Environment, 541, 268–281.

  • Meysman, F. J., & Middelburg, J. J. (2005). Acid-volatile sulfide (AVS)—a comment. Marine Chemistry, 97(3–4), 206–212.

    Article  CAS  Google Scholar 

  • Morse, J. W., & Rickard, D. (2004). Peer reviewed: chemical dynamics of sedimentary acid volatile sulfide. Environmental Science & Technology, 38, 131A–136A.

    Article  CAS  Google Scholar 

  • Nemati, K., Bakar, N. K. A., Abas, M. R., & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of Hazardous Materials, 192(1), 402–410.

    CAS  Google Scholar 

  • Pan, K., & Wang, W. X. (2012). Trace metal contamination in estuarine and coastal environments in China. Science of the Total Environment, 421, 3–16.

    Article  Google Scholar 

  • Pignotti, E., Guerra, R., Covelli, S., Fabbri, E., & Dinelli, E. (2018). Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure. Science of the Total Environment, 635, 216–227.

    Article  CAS  Google Scholar 

  • Quazi, S., Sarkar, D., & Datta, R. (2011). Changes in arsenic fractionation, bioaccessibility and speciation in organo-arsenical pesticide amended soils as a function of soil aging. Chemosphere, 84, 1563–1571.

  • Sheng, Y., Sun, Q., Shi, W., Bottrell, S., & Mortimer, R. (2015). Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China. Environmental Earth Sciences, 74(2), 1151–1160.

    Article  CAS  Google Scholar 

  • Thompson, A., Chadwick, O. A., Rancourt, D. G., & Chorover, J. (2006). Iron-oxide crystallinity increases during soil redox oscillations. Geochimica et Cosmochimica Acta, 70(7), 1710–1727.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, S., & Shan, X. Q. (2001). Effect of sample pretreatment upon the metal speciation in sediments by a sequential extraction procedure. Chemical Speciation & Bioavailability, 13(3), 69–74.

    Article  Google Scholar 

  • Zhong, H., & Wang, W. X. (2008). Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environmental Pollution, 151(1), 222–230.

    Article  CAS  Google Scholar 

  • Zhu, Z., Xue, J., Deng, Y., Chen, L., & Liu, J. (2016). Trace metal contamination in surface sediments of intertidal zone from Qinhuangdao, China, revealed by geochemical and magnetic approaches: distribution, sources, and health risk assessment. Marine Pollution Bulletin, 105(1), 422–429.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (Grant No. XDA23050203) and the National Natural Science Foundation of China (Grant No. 41373100). Additional support was provided by the Regional Key Project of STS of CAS (Grant No. KFJ-STS-QYZX-057) and the Key Research and Development Program of Shandong Province (Grant No. 2019GSF109002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Sheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Song, J., Ma, T. et al. Effects of drying pretreatments on the analysis of the mercury fraction in sediments. Environ Monit Assess 191, 607 (2019). https://doi.org/10.1007/s10661-019-7799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7799-z

Keywords

Navigation