Skip to main content
Log in

Evalution of sequential extractions on dry and wet sediments

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A five-step sequential extraction procedure was applied on dried and wet Ballastplaat Scheldt estuary sediments. When wet (fresh) sediments were used, all sample handling up to the 3rd extraction step, inclusive, was carried out under inert atmosphere. The repeatability of the procedure was very good on dry samples. For Fe as for Mn, RSD values are lower than 4%, except for Mn in the fifth extraction step where a spread of 10% is observed. The observed RSDs for Pb are of the same order of magnitude as those for Mn. On wet samples the spread of the results is higher than on dried ones. The highest RSDs observed for Fe amount to 20%, for Mn to 15% but for Pb an RSD of up to 44% was found. Better homogenization of the solid sediment part of lyophilized sediments and different porosities of wet sediment sub-samples may be the explanation. These results also indicated that drying/oxidizing of the sediment sample causes a shift from less available/mobile metal fractions to more available/mobile fractions. The Mn and Fe oxyhydroxide spikes added to a wet sediment sample were recovered between 100±10%. The results obtained after changing the sequence of the extraction steps (multiple rotations and inversions were tested) corroborated the progressive increase in the aggressive nature of the extraction solutions in our standard scheme. Although there is also no need to change the ratio volume of extractant to amount of sediment, increasing the number of extraction repetitions in steps 1 to 3 resulted, for some of those extraction steps, in a partially modified analyte distribution. Finally the method was applied to sandy and muddy sediment cores of the Scheldt estuary and revealed clear differences between metal distributions in both types of sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Baeyens W (1992) Trends Anal Chem 11:245–254

    Article  CAS  Google Scholar 

  2. Horvat M, Bloom N, Liang L (1993) Anal Chim Acta 281:135–152

    CAS  Google Scholar 

  3. Michel P, Averty B, Andral B, Chiffoleau J-F, Galgani F (2001) Mar Pollut Bull 42:1128–1132

    Article  CAS  PubMed  Google Scholar 

  4. De Gieter M, Leermakers M, Van Ryssen R, Noyen J, Goeyens L, Baeyens W (2002) Arch Environ Contam Toxicol 43:406–417

    Article  PubMed  Google Scholar 

  5. Tessier A, Campbell PGC, Bisson M (1979) Anal Chem 51:844–851

    CAS  Google Scholar 

  6. Salomons W, Förstner U, (1980) Environ Technol Lett 1:506–517

    CAS  Google Scholar 

  7. Quevauviller Ph, Rauret G, Lopez-Sanchez J-F, Rubio R, Ure A, Muntau H (1997) Sci Tot Environ 205:223–234

    Article  CAS  Google Scholar 

  8. Rauret G, Lopez-Sanchez J-F, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph (1999) J Environ Monit 1:57–61

    Article  CAS  PubMed  Google Scholar 

  9. Robbins JM, Lyle M, Heath GR (1984) Corvallis Oregon State University College of Oceanography

  10. Förstner U, Calmano W (1982) Vom Wasser 59:83–92

    Google Scholar 

  11. Marin P (1988) PhD thesis, University of Caen, France

  12. Jackson ML (1958) Soil chemical analysis. Prentice Hall, Englewood Cliffs, New Jersey

  13. Gibbs RJ (1973) Science 180:71–73

    CAS  Google Scholar 

  14. Engler RM, Brannon JM, Rose J, Bingham G (1977) A practical selective extraction procedure for sediment characterisation. In: Yen TF (ed) Chemistry of marine sediments. Ann Arbor, 163–171

  15. Patchineelam SR (1975) Dissertation, University of Heidelberg Germany

  16. Deurer R, Förstner U, Schmoll G (1978) Geochim Comochim Acta 42:425–427

    CAS  Google Scholar 

  17. Chao LL (1972) Soil Sci Soc Am Proc 36:764–768

    Google Scholar 

  18. Schwertmann U (1964) Z Pflanzenernähr Bodenkd 105:194–202

    Google Scholar 

  19. Scheinost A, Kretzschmar R, Pfister S, Roberts DLR (2002) Environ Sci Technol 36:5021–5028

    Article  CAS  PubMed  Google Scholar 

  20. Chester R, Hughes MJ (1967) Chem Geol 2:249–262

    CAS  Google Scholar 

  21. Holmgren GS (1967) Soil Sci Soc Am Proc 31:210−211

    CAS  Google Scholar 

  22. Cooper BS, Harris RC (1974) Mar Pollut Bull 5:24–26

    CAS  Google Scholar 

  23. Volkov II, Fomina LS (1974) Influence of organic matter and processes of sulfide formation on the distribution of some trace elements in deepwater sediments in the Black Sea. In: Degens ET, Ross RA (eds) The Black Sea—geology chemistry and biology. Am Assoc Petrol Geol Memoir 20:456–476

    CAS  Google Scholar 

  24. Kersten M, Förstner U (1987) Mar Chem 22:299–312

    CAS  Google Scholar 

  25. Benjamin MM, Leckie JO (1981) J Colloid Interface Sci 79:209–221

    CAS  Google Scholar 

  26. Pickering WF (1988) Talanta 35:559–566

    Article  Google Scholar 

  27. Campanella L, D'Orazio D, Petronio BM, Pietrantonio E (1995) Anal Chim Acta 309:387–393

    Article  CAS  Google Scholar 

  28. Quevauviller P, Rauret G, Griepink B (1993) Int J Environ Anal Chem 51:231–235

    Google Scholar 

  29. Thomson EA, Luoma SN, Cain DJ, Johanson C (1980) Water Air Soil Pollut 14:215–233

    CAS  Google Scholar 

  30. Bordas F, Bourg ACM (1998) Water Air Soil Pollut 103:137–149

    Article  CAS  Google Scholar 

  31. Davidson cm, Wilson LE, Ure AM (1999) Fresenius J Anal Chem 363:134–136

    Article  Google Scholar 

  32. Nirel PMV, Morel FMM (1990) Water Res 24:1055–1056

    Google Scholar 

  33. Nirel P, Thomas AJ, Martin JM (1986) A critical evaluation of sequential extraction techniques. In: Bulman RA, Cooper RJ (eds) Speciation of fission and activation products in the environment. Elsevier, London

  34. Belzille N, Lecompte P, Tessier A (1989) Environ Sci Technol 23:1015–1020

    Google Scholar 

  35. Wallmann K, Kersten M, Gruber J, Förstner U (1992) Trace metal binding forms in sulfide bearing sediments: thermodynamic equilibrium calculations and sequential extractions, BCR Workshop on single and sequential extraction in sediments and soil, Sitges, Spain, March 1992

    Google Scholar 

  36. Van Ryssen R, Leermakers M, Baeyens W (1999) Environ Sci Pollut 2:75–86

    Google Scholar 

  37. Panutrakul S, Baeyens W (1991) Mar Pollut Bull 22:128–134

    CAS  Google Scholar 

  38. Panutrakul S (1993) PhD thesis, Vrije Universiteit Brussel, Belgium

  39. Srinetr V (1997) PhD thesis, Vrije Universiteit Brussel, Belgium

  40. Förstner U, Patchineelam SR (1981) Rapp P-v Reun Cons Int Explor Mer 181:49–58

    Google Scholar 

  41. Tessier A, Campbell PGC (1988) Anal Chem 60:1475–1476

    CAS  Google Scholar 

  42. Van Ryssen R, Alam M, Goeyens L, Baeyens W (1998) Water Sci Technol 37:283–290

    Article  Google Scholar 

  43. Calmano W, Mangold S, Welter E (2001) Fresenius J Anal Chem 371:823–830

    Article  CAS  PubMed  Google Scholar 

  44. Dehairs FW, Baeyens W, Van Gansbeke D (1989) Estuar Coast Shelf Sci 29:457–471

    CAS  Google Scholar 

Download references

Aknowledgement

The authors thank the "Vlaamse Milieu Maatschappij, VMM" for financial and logistic support. The constructive comments of the reviewers improved this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leermakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeyens, W., Monteny, F., Leermakers, M. et al. Evalution of sequential extractions on dry and wet sediments. Anal Bioanal Chem 376, 890–901 (2003). https://doi.org/10.1007/s00216-003-2005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2005-z

Keywords

Navigation