Skip to main content
Log in

Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arshad, M. N., Nisar, M. A., Khurshid, M., Hussain, S. Z., Maqsood, U., Asghar, M. T., & Nazir, J. (2015). Molecular basis of arsenite (As+3)-induced acute cytotoxicity in human cervical epithelial carcinoma cells. Libyan Journal of Medicine, 10, 2015.

    Article  Google Scholar 

  • Bączek-Kwinta, R., Antonkiewicz, J., Łopata-Stasiak, A., Kępka, W., & A. (2019). Smoke compounds aggravate stress inflicted on Brassica seedlings by unfavourable soil conditions. Photosynthetica, 57, 1–8.

    Article  Google Scholar 

  • Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z. S., Pawson, T., Gingras, A. C., Nesvizhskii, A. I., & Tyers, M. (2010). A global protein kinase and phosphatase interaction network in yeast. Science, 328, 1043–1046.

    Article  CAS  Google Scholar 

  • Chemek, M., Boughammoura, S., Mimouna, S. B., Chouchene, L., Banni, M., & Messaoudi, I. (2015). Changes of the mRNA expression pattern of Zn transporters: a probable mechanism for cadmium retention and zinc redistribution in the suckling rat tissues. Biological Trace Element Research, 165, 173–182.

    Article  CAS  Google Scholar 

  • Clark-Adams, C. D., Norris, D., Osley, M. A., Fassler, J. S., & Winston, F. (1988). Changes in histone gene dosage alter transcription in yeast. Genes and Development, 2, 150–159.

    Article  CAS  Google Scholar 

  • Cuddihy, A. R., & O'connell, M. J. (2003). Cell-cycle responses to DNA damage in G2. International Review of Cytology, 222, 99–140.

    Article  Google Scholar 

  • Discola, K. F., De Oliveira, M. A., Cussiol, J. R. R., Monteiro, G., Bárcena, J. A., Porras, P., Padilla, C. A., Guimarães, B. G., & Netto, L. E. (2009). Structural aspects of the distinct biochemical properties of glutaredoxin 1 and glutaredoxin 2 from Saccharomyces cerevisiae. Journal of Molecular Biology, 385, 889–901.

    Article  CAS  Google Scholar 

  • Draculic, T., Dawes, I. W., & Grant, C. M. (2000). A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 36, 1167–1174.

    Article  CAS  Google Scholar 

  • Elahi, A., & Rehman, A. (2019). Comparative behavior of two gram positive Cr6+ resistant bacterial strains Bacillus aerius S1 and Brevibacterium iodinum S2 under hexavalent chromium stress. Biotechnology Reports, 21, e00307.

    Article  Google Scholar 

  • Fabrizio, P., Pletcher, S., Minois, N., Vaupel, J., & Longo, V. (2004). Chronological aging independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Letters, 557, 136–142.

    Article  CAS  Google Scholar 

  • Falcone, C., & Mazzoni, C. (2016). External and internal triggers of cell death in yeast. Cellular and Molecular Life Sciences, 73, 2237–2250.

    Article  CAS  Google Scholar 

  • Galibert, F., Alexandraki, D., Baur, A., Boles, E., Chalwatzis, N., Chuat, J. C., Coster, F., Cziepluch, C., De Haan, M., Domdey, H., Durand, P., Entian, K. D., Gatius, M., Goffeau, A., Grivell, L. A., Hennemann, A., Herbert, C. J., Heumann, K., Hilger, F., Hollenberg, C. P., Huang, M. E., Jacq, C., Jauniaux, J. C., Katsoulou, C., & Karpfinger-Hartl, L. (1996). Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO Journal, 15, 2031–2049.

    Article  CAS  Google Scholar 

  • Gasch, A. P. (2003). The environmental stress response: a common yeast response to diverse environmental stresses. In: Yeast stress responses, (Eds). Springer 11–70.

  • Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiological Review, 31, 535–569.

    Article  CAS  Google Scholar 

  • Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., & Oliver, S. G. (1996). Life with 6000 genes. Science, 274, 563–547.

    Article  Google Scholar 

  • Gomes, D., Riger, C., Pinto, M., Panek, A., & Eleutherio, E. (2005). Evaluation of the role of Ace1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environmental Toxicology and Pharmacology, 20, 383–389.

    Article  CAS  Google Scholar 

  • Gourlay, C. W., & Ayscough, K. R. (2005). Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. Journal of Cell Science, 118, 2119–2132.

    Article  CAS  Google Scholar 

  • Grant, C. M., Luikenhuis, S., Beckhouse, A., Soderbergh, M., & Dawes, I. W. (2000). Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. BBA-Gene Structure and Expression, 1490, 33–42.

    Article  CAS  Google Scholar 

  • Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Fröhlich, K. U., Wissing, S., Büttner, S., Fehr, M., Sigrist, S., & Madeo, F. (2004). Chronological aging leads to apoptosis in yeast. Journal of Cell Biology, 164, 501–507.

    Article  CAS  Google Scholar 

  • Hill, S. M., & Nystrom, T. (2015). The dual role of a yeast metacaspase: What doesn't kill you makes you stronger. BioEssays, 37, 525–531.

    Article  Google Scholar 

  • Hill, S. M., Hao, X., Liu, B., & Nyström, T. (2014). Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science, 344, 1389–1392.

    Article  CAS  Google Scholar 

  • Ilyas, S., & Rehman, A. (2018). Metal resistance and uptake by Trichosporon asahii and Pichia kudriavzevii isolated from industrial effluents. Archives of Environmental Protection, 44, 77–84.

    CAS  Google Scholar 

  • Jiang, X., Sun, Q., Li, H., Li, K., & Ren, X. (2014). The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. International Journal of Cancer, 135, 1991–1996.

    Article  CAS  Google Scholar 

  • Jin, Y. H., Clark, A. B., Slebos, R. J., Al-Refai, H., Taylor, J. A., Kunkel, T. A., Resnick, M. A., & Gordenin, D. A. (2003). Cadmium is a mutagen that acts by inhibiting mismatch repair. Nature Genetics, 34, 326–329.

    Article  CAS  Google Scholar 

  • Khan, Z., Hussain, S. Z., Rehman, A., Zulfiqar, S., & Shakoori, A. (2015a). Evaluation of cadmium resistant bacterium, Klebsiella pneumoniae, isolated from industrial wastewater for its potential use to bioremediate environmental cadmium. Pakistan Journal of Zoology, 47, 1533–1543.

    CAS  Google Scholar 

  • Khan, Z., Nisar, M. A., Hussain, S. Z., Arshad, M. N., & Rehman, A. (2015b). Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 99, 10745–10757.

    Article  CAS  Google Scholar 

  • Khan, Z., Rehman, A., Nisar, M. A., Zafar, S., Hussain, S. Z., Zerr, I., Hussain, I., Waseem, M., & Arif, M. (2017a). Molecular basis of Cd(+2) stress response in Candida tropicalis. Applied Microbiology and Biotechnology, 101, 7715–7728.

    Article  CAS  Google Scholar 

  • Khan, Z., Rehman, A., Nisar, M. A., Zafar, S., & Zerr, I. (2017b). Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress. Chemosphere, 174, 136–147.

    Article  CAS  Google Scholar 

  • Kim, S., Cheon, H.-S., Kim, S.-Y., Juhnn, Y.-S., & Kim, Y.-Y. (2013). Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153. BMC Cell Biology, 14, 4.

    Article  CAS  Google Scholar 

  • Kuang, X., Fang, Z., Wang, S., Shi, P., & Huang, Z. (2015). Effects of cadmium on intracellular cation homoeostasis in the yeast Saccharomyces cerevisiae. Toxicology and Environmental Chemistry, 97, 922–930.

    Article  CAS  Google Scholar 

  • Lee, S. M., Kim, J. H., Cho, E. J., & Youn, H. D. (2009). A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death and Differentiation, 16, 738–748.

    Article  CAS  Google Scholar 

  • Li, Z., & Yuan, H. (2006). Characterization of cadmium removal by Rhodotorula sp. Y11. Applied Microbiology and Biotechnology, 73, 458–463.

    Article  CAS  Google Scholar 

  • Longo, V.D., Ellerby, L.M., Bredesen, D.E., Valentine, J.S., & Gralla,, E.B. (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. Journal of Cell Biology, 137, 1581-1588.

  • Madeo, F., Herker, E., Maldener, C., Wissing, S., Lächelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S. J., Wesselborg, S., & Fröhlich, K. U. (2002). A caspase-related protease regulates apoptosis in yeast. Molecular Cell, 9, 911–917.

    Article  CAS  Google Scholar 

  • Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., & Fröhlich, K.-U. (2004). Apoptosis in yeast. Current Opinion in Microbiology, 7, 655–660.

    Article  CAS  Google Scholar 

  • Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485–492.

    Article  CAS  Google Scholar 

  • Meeks-Wagner, D., & Hartwell, L. H. (1986). Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell, 44, 43–52.

    Article  CAS  Google Scholar 

  • Meunier, B., De Visser, S. P., & Shaik, S. (2004). Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews, 104, 3947–3980.

    Article  CAS  Google Scholar 

  • O'brien, T., Mandel, H. G., Pritchard, D. E., & Patierno, S. R. (2002). Critical role of chromium (Cr)-DNA interactions in the formation of Cr-induced polymerase arresting lesions. Biochemistry, 41, 12529–12537.

    Article  CAS  Google Scholar 

  • Pai, H. V., Starke, D. W., Lesnefsky, E. J., Hoppel, C. L., & Mieyal, J. J. (2007). What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxidants and Redox Signaling, 9, 2027–2034.

    Article  CAS  Google Scholar 

  • Peeters, K., Van Leemputte, F., Fischer, B., Bonini, B. M., Quezada, H., Tsytlonok, M., Haesen, D., Vanthienen, W., Bernardes, N., Gonzalez-Blas, C. B., Janssens, V., Tompa, P., Versées, W., & Thevelein, J. M. (2017). Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nature Communications, 8, 922.

    Article  CAS  Google Scholar 

  • Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., & Severin, F. F. (2005). Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast. Journal of Cell Biology, 168, 257–269.

    Article  CAS  Google Scholar 

  • Prado, F., & Aguilera, A. (2005). Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Molecular and Cellular Biology, 25, 1526–1536.

    Article  CAS  Google Scholar 

  • Ramljak, S., Asif, A. R., Armstrong, V. W., Wrede, A., Groschup, M. H., Buschmann, A., Schulz-Schaeffer, W., Bodemer, W., & Zerr, I. (2008). Physiological role of the cellular prion protein (PrPc): protein profiling study in two cell culture systems. J Proteome Res, 7, 2681–2695.

    Article  CAS  Google Scholar 

  • Rani, A., Kumar, A., Lal, A., & Pant, M. (2014). Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research, 24, 378–399.

    Article  CAS  Google Scholar 

  • Rehman, A., & Anjum, M. S. (2011). Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174, 585–595.

    Article  CAS  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85, 162–170.

    CAS  Google Scholar 

  • Saunders, P. A., Chen, R. W., & Chuang, D. M. (1999). Nuclear translocation of glyceraldehyde 3 phosphate dehydrogenase isoforms during neuronal apoptosis. Journal of Neurochemistry, 72, 925–932.

    Article  CAS  Google Scholar 

  • Silva, A., Almeida, B., Sampaio-Marques, B., Reis, M. I., Ohlmeier, S., Rodrigues, F., Vale, A., & Ludovico, P. (2011). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a specific substrate of yeast metacaspase. Biochimica et Biophysica Acta, 1813, 2044–2049.

    Article  CAS  Google Scholar 

  • Walter, D., Wissing, S., Madeo, F., & Fahrenkrog, B. (2006). The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. Journal Cell Science, 119, 1843–1851.

    Article  CAS  Google Scholar 

  • Wang, Y., Fang, J., Leonard, S. S., & Rao, K. M. (2004). Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Biology and Medicine, 36, 1434–1443.

    Article  CAS  Google Scholar 

  • Zheng, L., Roeder, R. G., & Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114, 255–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors express their gratitude to the Pakistan Science Foundation (PSF), Islamabad-Pakistan for support the present research work under project No. PSF/Res/ Envr (97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rehman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z., Nisar, M.A., Muzammil, S. et al. Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer. Environ Monit Assess 191, 490 (2019). https://doi.org/10.1007/s10661-019-7631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7631-9

Key words

Navigation