Skip to main content

Advertisement

Log in

Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha−1 h−1 year−1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha−1 h−1 year−1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha−1h−1year−1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha−1 h−1 year−1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (− 9.34, − 0.25 and − 0.30 MJ mm ha−1 h−1 year−1, respectively for linear regression, Spearman’s Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (− 25.45, − 0.52, − 0.40, and − 8.86, − 1.07, − 0.77 MJ mm ha−1 h−1 year−1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha−1 h−1 year−1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha1 h−1 year−1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman’s Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1), 111–121.

    Article  Google Scholar 

  • Arnoldous, H. M. J. (1980). An approximation of the rainfall factor in the USLE in assessment of Erosion. Wiley Chichester: England.

    Google Scholar 

  • Ballabio, C., Borrelli, P., Spinoni, J., Meusburger, K., Michaelides, S., Beguería, S., Klik, A., Petan, S., Janeček, M., Olsen, P., & Aalto, J. (2017). Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 579, 1298–1315.

    Article  CAS  Google Scholar 

  • Basarin, B., Lukić, T., Pavić, D., & Wilby, R. L. (2016). Trends and multi-annual variability of water temperatures in the river Danube, Serbia. Hydrological Processes, 30(18), 3315–3329.

    Article  Google Scholar 

  • Belle, G., & Hughes, J. P. (1984). Nonparametric tests for trend in water quality. Water Resources Research, 20(1), 127–136.

    Article  Google Scholar 

  • Bols, P. (1978). The iso-erodent map of Java and Madura. Belgian technical assistance project ATA 105. Bogor: Soil Research Institute.

    Google Scholar 

  • Borrelli, P., Diodato, N., & Panagos, P. (2016). Rainfall erosivity in Italy: a national scale spatio-temporal assessment. International Journal of Digital Earth, 9(9), 835–850.

    Article  Google Scholar 

  • Brown, L. C., & Foster, G. R. (1987). Storm erosivity using idealized intensity distributions. Transactions of ASAE, 30, 379–386.

    Article  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Creating continuous surfaces from point data. Principles of geographic information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Campo, M., Casalí, J., & Giménez, R. (2016). Exploring the relationship between gully erosion and rainfall erosivity. In EGU General Assembly Conference Abstracts (Vol. 18, p. 6518).

    Google Scholar 

  • Cetin, M. (2015a). Evaluation of the sustainable tourism potential of a protected area for landscape planning: a case study of the ancient city of Pompeipolis in Kastamonu. International Journal of Sustainable Development and World Ecology, 22(6), 490–495.

    Article  Google Scholar 

  • Cetin, M. (2015b). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640.

    Article  Google Scholar 

  • Cetin, M. (2015c). Consideration of permeable pavement in landscape architecture. Journal of Environmental Protection and Ecology, 16(1), 385–392.

    Google Scholar 

  • Cetin, M. (2016a). Sustainability of urban coastal area management: a case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.

    Article  Google Scholar 

  • Cetin, M. (2016b). A change in the amount of CO2 at the Center of the Examination Halls: case study of Turkey. Studies on Ethno-Medicine, 10(2), 146–155.

    Article  Google Scholar 

  • Cetin, M. (2016c). Determination of bioclimatic comfort areas in landscape planning: a case study of Cide coastline. Turkish Journal of Agriculture-Food Science and Technology, 4(9), 800–804.

    Article  Google Scholar 

  • Cetin, M., & Sevik, H. (2016). Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environmental Monitoring and Assessment, 188(1), 52.

    Article  Google Scholar 

  • Cetin, M., Topay, M., Kaya, L. G., & Yilmaz, B. (2010). Efficiency of bioclimatic comfort in landscape planning process: case of Kutahya. Turkish Journal of Forestry, 1(1), 83–95.4.

    Google Scholar 

  • Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018a). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375.

    Article  Google Scholar 

  • Cetin, M., Sevik, H., & Yigit, N. (2018c). Climate type-related changes in the leaf micromorphological characters of certain landscape plants. Environmental Monitoring and Assessment, 190, 404.

    Article  Google Scholar 

  • Cetin, M., Zeren, I., Sevik, H., Cakir, C., & Akpinar, H. (2018d). A study on the determination of the natural park's sustainable tourism potential. Environmental Monitoring and Assessment, 190(3), 167.

    Article  Google Scholar 

  • Chen, F. W., & Liu, C. W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.

    Article  Google Scholar 

  • Chen, T., Niu, R. Q., Li, P. X., Zhang, L. P., & Du, B. (2011). Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environmental Earth Sciences, 63(3), 533–541.

    Article  CAS  Google Scholar 

  • Diodato, N. (2006). Predicting RUSLE (revised universal soil loss equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist, 26(1), 63–70.

    Article  Google Scholar 

  • Diop, L., Bodia, A., & Dior, D. (2016). Spatiotemporal trend analysis of the mean annual rainfall in Senegal. European Science Journal, 12(12), 231–245.

    Google Scholar 

  • Douglas, I. (1996). The impact of land-use changes, especially logging, shifting cultivation, mining and urbanization on sediment yields in humid tropical Southeast Asia: a review with special reference to Borneo. IAHS Publications-Series of Proceedings and Reports-Intern Association Hydrological Sciences, 236, 463–472.

    Google Scholar 

  • Ferro, V., Porto, P., & Yu, B. (1999). A comparative study of rainfall erosivity estimation for southern Italy and southeastern Australia. Hydrological Sciences Journal, 44(1), 3–24.

    Article  Google Scholar 

  • Gaubi, I., Chaabani, A., Mammou, A. B., & Hamza, M. H. (2017). A GIS-based soil erosion prediction using the revised universal soil loss equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86(1), 219–239.

    Article  Google Scholar 

  • Gocic, M., & Trajkovic, S. (2014). Analysis of trends in reference evapotranspiration data in a humid climate. Hydrological Sciences Journal, 59(1), 165–180.

    Article  Google Scholar 

  • Gregersen, B., Aalbæk, J., Lauridsen, P. E., Kaas, M., Lopdrup, U., Veihe, A., & van der Keur, P. (2003). Land use and soil erosion in Tikolod, Sabah, Malaysia. ASEAN Review of Biodiversity and Environmental conservation (ARBEC), 1-11.

  • Hashim, M., Reba, N. M., Nadzri, M. I., Pour, A. B., Mahmud, M. R., Yusoff, A. R. M., Ali, M. I., Jaw, S. W., & Hossain, M. S. (2016). Satellite-based run-off model for monitoring drought in peninsular Malaysia. Remote Sensing, 8(8), 633.

    Article  Google Scholar 

  • Hoyos, N., Waylen, P. R., & Jaramillo, Á. (2005). Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes. Journal of Hydrology, 314(1), 177–191.

    Article  Google Scholar 

  • Huang, J., Zhang, J., Zhang, Z., & Xu, C. Y. (2013). Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River basin. Stochastic Environmental Research and Risk Assessment, 27(2), 337–351.

    Article  Google Scholar 

  • Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M. A., Idris, W. M. R., & Rahim, S. A. (2013). Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Sciences Discussions, 10(4), 4567–4596.

    Article  Google Scholar 

  • Kaya, E., Agca, M., Adiguzel, F., & Cetin, M. (2018a). Spatial data analysis with R programming for environment. Human and ecological risk assessment: An International Journal, 1-10. DOI: https://doi.org/10.1080/10807039.2018.1470896.

  • Kaya, L. G., Kaynakci-Elinc, Z., Yucedag, C., & Cetin, M. (2018b). Environmental outdoor plant preferences: a practical approach for choosing outdoor plants in urban or suburban residential areas in Antalya, Turkey. Fresenius Environmental Bulletin, 27(12), 7945–7952.

    CAS  Google Scholar 

  • Kendall, M. G. (1948). Rank correlation methods. London: Griffin.

    Google Scholar 

  • Kinnell, P. I. A. (2010). Event soil loss, runoff and the universal soil loss equation family of models: a review. Journal of Hydrology, 385, 384–397.

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.

    Article  Google Scholar 

  • Lee, J. H., & Heo, J. H. (2011). Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409(1), 30–48.

    Article  Google Scholar 

  • Lee, H. L., Koh, H. L., & Al Rabia ah, H. A. (2004). Predicting soil loss from logging in Malaysia. IAHS PUBLICATION, 308-315.

  • Leow, C. S., Ghani, A. A., Zakaria, N. A., & Abidin, R. Z. (2011). Development of rainfall erosivity isohyet map for Peninsular Malaysia. In 3rd International Conference on Managing Rivers in the 21st Century: Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity (pp. 748-756).

  • Li, X., & Ye, X. (2018). Variability of rainfall erosivity and erosivity density in the Ganjiang river catchment, China: characteristics and influences of climate change. Atmosphere, 9, 48. https://doi.org/10.3390/atmos9020048.

    Article  Google Scholar 

  • Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055.

    Article  Google Scholar 

  • Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512.

    Article  Google Scholar 

  • Luis, M. D., Raventós, J., González-Hidalgo, J. C., Sánchez, J. R., & Cortina, J. (2000). Spatial analysis of rainfall trends in the region of Valencia (East Spain). International Journal of Climatology, 20(12), 1451–1469.

    Article  Google Scholar 

  • Ma, X., He, Y., Xu, J., van Noordwijk, M., & Lu, X. (2014). Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena, 121, 248–259.

    Article  Google Scholar 

  • Malaysian Meteorological Department (MMD). (2009). Climate change scenarios for Malaysian 2001–2090 (pp. 1–84). Petaling Jaya: Malaysian Metrological Department, Scientific Report.

    Google Scholar 

  • Malaysian Meteorological Department (MMD) (2017) Malaysia’s climate: seasonal rainfall variation in Sabah and Sarawak. http://www.met.gov.my accessed on 12.07.2017.

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259.

    Article  Google Scholar 

  • Meusburger, K., Steel, A., Panagos, P., Montanarella, L., & Alewell, C. (2012). Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrology and Earth System Sciences, 16, 167–177.

    Article  Google Scholar 

  • Mir, S. I., Sahid, I., Gasim, M. B., Rahim, S. A., & Toriman, M. E. (2010). Soil loss assessment in the TasikChini catchment, Pahang, Malaysia. Geological Society of Malaysia Bulletin, 56, 1–7.

    Article  Google Scholar 

  • Mohtar, Z. A., Yahaya, A. S., & Ahmad, F. (2015). Rainfall erosivity estimation for northern and southern peninsular Malaysia using Fournier indexes. Procedia Engineering, 25, 179–184.

    Article  Google Scholar 

  • Mojaddadi Rizeei, H., Saharkhiz, M. A., Pradhan, B., & Ahmad, N. (2015). Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto International, 31, 1158–1177. https://doi.org/10.1080/10106049.2015.1120354.

    Article  Google Scholar 

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2015). Introduction to linear regression analysis. John Wiley & Sons.

  • Morgan, R. P. C. (1974). Estimating regional variations in soil erosion hazard in peninsular Malaysia. Malayan Nature Journal, 28, 94–106.

    Google Scholar 

  • Morgan, R. P. C., & Davidson, D. A. (1991). Soil erosion and conservation. U.K.: Longman Group.

    Google Scholar 

  • Moses, A. N. (2017). Spatial variation of rainfall runoff Erosivity (R) factor for river Nzoia Basin, Western Kenya. Technology, 8(2), 418–422.

    Google Scholar 

  • Nearing, M. A., Yin, S. Q., Borrelli, P., & Polyakov, V. O. (2017). Rainfall erosivity: an historical review. Catena, 157, 357–362.

    Article  Google Scholar 

  • de Neergaard, A., Magid, J., & Mertz, O. (2008). Soil erosion from shifting cultivation and other smallholder land use in Sarawak, Malaysia. Agriculture, Ecosystems & Environment, 125(1), 182–190.

    Article  Google Scholar 

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models, 4, 318. Chicago: Irwin.

    Google Scholar 

  • Oliveira, P. T. S., Wendland, E., & Nearing, M. A. (2013). Rainfall erosivity in Brazil: a review. Catena, 100, 139–147.

    Article  Google Scholar 

  • Özcan, A. U., Uzun, O., Başaran, M., Erpul, G., Akşit, S., & Palancıoğlu, H. M. (2015). Soil erosion risk assessment for volcano cone of Alidaği Mountain by using USLE/RUSLE, GIS and geostatistics. Fresenius Environmental Bulletin, 24(6), 2090–2100.

    Google Scholar 

  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447.

    Article  Google Scholar 

  • Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen, P., & Aalto, J. (2015b). Rainfall erosivity in Europe. Science of the Total Environment, 511, 801–814.

    Article  CAS  Google Scholar 

  • Panagos, P., Ballabio, C., Borrelli, P., & Meusburger, K. (2016). Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena, 137, 161–172.

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K.J., Yang, J.E., Ni, J., Miao, C., Chattopadhyay, N., & Sadeghi, S.H. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific reports, 7(1), p.4175

  • Partal, T., & Kahya, E. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(9), 2011–2026.

    Article  Google Scholar 

  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.

    Article  Google Scholar 

  • Rahman, M. A., Yunsheng, L., & Sultana, N. (2016). Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 1–16.

  • Ramos, M. C., & Durán, B. (2014). Assessment of rainfall erosivity and its spatial and temporal variabilities: case study of the Penedès area (NE Spain). Catena, 123, 135–147.

    Article  Google Scholar 

  • Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R factor in the revised USLE. Journal of Hydrology, 157, 287–306.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Renschler, C. S., Mannaerts, C., & Diekkrüger, B. (1999). Evaluating spatial and temporal variability in soil erosion risk—rainfall erosivity and soil loss ratios in Andalusia, Spain. Catena, 34(3), 209–225.

    Article  Google Scholar 

  • Roose, E. J. (1977). Application of the universal soil loss equation of Wischmeier and Smith in West Africa. In D. J. Greenland & R. Lal (Eds.), Soil conservation and management in the humid tropics (pp. 177–187). London: Wiley.

    Google Scholar 

  • Rozos, D., Skilodimou, H. D., Loupasakis, C., & Bathrellos, G. D. (2013). Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environmental Earth Sciences, 70(7), 3255–3266.

    Article  Google Scholar 

  • Scherrer, S. C., Fischer, E. M., Posselt, R., Liniger, M. A., Croci-Maspoli, M., & Knutti, R. (2016). Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of Geophysical Research: Atmospheres, 121(6), 2626–2637.

    Google Scholar 

  • Shadmani, M., Marofi, S., & Roknian, M. (2012). Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resources Management, 26(1), 211–224.

    Article  Google Scholar 

  • Shamshad, A., Azhari, M. N., Isa, M. H., Wan Hussin, W. M. A., & Parida, B. P. (2002). Development of an appropriate procedure for estimation of RUSLE EI30 index and preparation of erosivity maps for Pulau Penang in peninsular Malaysia. Catena, 72, 423–432.

    Article  Google Scholar 

  • da Silva, A. M. (2004). Rainfall erosivity map for Brazil. Catena, 57(3), 251–259.

    Article  Google Scholar 

  • Singh, G., Rambabu, & Subhash, C. (1981). Soil loss prediction research in India. Bull. No. T-12/D- 9. Dehradun: CSWCR& TI.

    Google Scholar 

  • Suparta, W., & Yatim, A. N. M. (2017). An analysis of heat wave trends using heat index in East Malaysia. In Journal of Physics: Conference Series, 852(1), p. 012005. IOP Publishing.

  • Tayyab, M., Zhou, J., Adnan, R., & Zahra, A. (2017). Monthly precipitation trend analysis by applying nonparametric Mann-Kendall (MK) and Spearman’s rho (SR) tests in Dongting Lake, China: 1961-2012. Indonesian Journal of Electrical Engineering and Computer Science, 5(1), 41–47.

    Article  Google Scholar 

  • Vijith, H., Seling, L. W., & Dodge-Wan, D. (2018a). Effect of cover management factor in quantification of soil loss: case study of Sungai Akah subwatershed, Baram River basin Sarawak, Malaysia. Geocarto international, 33(5), 505-521

  • Vijith, H., Seling, L. W., & Dodge-Wan, D. (2018b). Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo. Environment, development and sustainability, 20(3), 1365-1384

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. U.S. Department of Agriculture Handbook, No. 537

  • Wong, C. L., Venneker, R., Uhlenbrook, S., Jamil, A. B. M., & Zhou, Y. (2009). Variability of rainfall in peninsular Malaysia. Hydrology and Earth System Sciences Discussions, 6(4), 5471–5503.

    Article  Google Scholar 

  • Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592.

    Article  Google Scholar 

  • Xin, Z., Yu, X., Li, Q., & Lu, X. X. (2011). Spatiotemporal variation in rainfall erosivity on the Chinese loess plateau during the period 1956–2008. Regional Environmental Change, 11(1), 149–159.

    Article  Google Scholar 

  • Yin, S., Xie, Y., Liu, B., & Nearing, M. A. (2015). Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrology and Earth System Sciences Discussions, 12, 4965–4996.

    Article  Google Scholar 

  • Yu, B., & Rosewell, C. J. (1996). An assessment of a daily rainfall erosivity model for New South Wales, Australia. Journal of Soil Research, 34, 139–152.

    Article  Google Scholar 

  • Yu, B., Hashim, G. M., & Eusof, Z. (2001). Estimating the R-factor with limited rainfall data: a case study from peninsular Malaysia. Journal of Soil and Water Conservation, 56(2), 101–105.

    Google Scholar 

  • Yucedag, C., Kaya, L. G., & Cetin, M. (2018). Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 190(2), 60.

    Article  Google Scholar 

  • Yue, B. J., Shi, Z. H., & Fang, N. F. (2014). Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau. Natural Hazards, 74(2), 585–602.

    Article  Google Scholar 

  • Zhang, W. B., Xie, Y., & Liu, B. Y. (2002). Rainfall erosivity estimation using daily rainfall amounts. Scientia Geographica Sinica, 22, 705–711.

    Google Scholar 

  • Zhao, Q., Liu, Q., Ma, L., Ding, S., Xu, S., Wu, C., & Liu, P. (2017). Spatiotemporal variations in rainfall erosivity during the period of 1960–2011 in Guangdong Province, southern China. Theoretical and Applied Climatology, 128(1–2), 113–128.

    Article  Google Scholar 

  • Zhijia, G., Xingwu, D., Bing, L., Jinming, H., & Jiaonan, H. (2016). The spatial distribution and temporal variation of rainfall erosivity in the Yunnan plateau, Southwest China: 1960–2012. Catena, 145, 291–300.

    Article  Google Scholar 

Download references

Acknowledgements

They authors thank Curtin University Malaysia for facilities and other assistance and the Department of Irrigation and Drainage (DID), Malaysia for providing rainfall data. Authors are also thankful to the anonymous reviewer for critical review, constructive comments and suggestions, which significantly improved the quality of the manuscript.

Funding

The authors wish to thank Sarawak Energy Berhad for funding this research under the Project “Mapping of Soil Erosion Risk” (grant number RD01/2014(C)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Vijith.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijith, H., Dodge-Wan, D. Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo. Environ Monit Assess 191, 494 (2019). https://doi.org/10.1007/s10661-019-7604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7604-z

Keywords

Navigation