Skip to main content
Log in

Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coastal soils are particularly sensitive to nonnative species invasion. In this context, spatially explicit soil information is essential for improving the knowledge of the role of soil in changing environments, supporting coastal sustainable management. Synthetic-aperture radar (SAR) data provides an attractive opportunity to monitor soil because the acquisition of images is independent of weather and daylight. However, SAR has not been commonly used for soil prediction. In this study, we firstly investigated the temporal variation of vegetation canopy and the soil-vegetation relationship using Sentinel-1 data in an invaded coastal wetland. And then we built 3D models to predict soil properties at multiple depths. A total of 16 Sentinel-1 images were acquired in a growing season. A series of soil physicochemical properties were examined including soil bulk density, texture, organic/inorganic carbon, pH, salinity, total nitrogen, and C/N ratio, relating to three depth layers in the top 1-m depth. Our results showed that time-series Sentinel-1 data can capture temporal characteristics of vegetation, and VH/VV was more sensitive to the vegetation growth than VH and VV. The soil-vegetation relationship captured by time-series SAR data was beneficial to predict soil properties, especially for soil chemical properties. The models provided permissible prediction accuracy, with an average RPD of 0.99. We concluded that the prior understanding of the temporal variation of SAR data is essential for developing practical soil prediction strategy. Our results highlight that SAR has the potential to predict a diverse set of soil properties in coastal wetlands with dense vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari, K., Hartemink, A. E., Minasny, B., Kheir, R. B., Greve, M. B., & Greve, M. H. (2014). Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One, 9, e105519.

    Article  Google Scholar 

  • Anne, N. J., Abd-Elrahman, A. H., Lewis, D. B., & Hewitt, N. A. (2014). Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. International Journal of Applied Earth Observations, 33, 47–56.

    Article  Google Scholar 

  • Araya, S., Lyle, G., Lewis, M., & Ostendorf, B. (2016). Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity. Ecological Indicators, 60, 1263–1272.

    Article  Google Scholar 

  • Attema, E., Bargellini, P., Edwards, P., Levrini, G., Lokas, S., Moeller, L., et al. (2007). Sentinel-1-the radar mission for GMES operational land and sea services. ESA Bulletin, 131, 10–17.

    Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Berkowitz, J. F., Van Zomeren, C. M., Piercy, C. D., & White, J. R. (2018). Evaluation of coastal wetland soil properties in a degradation marsh. Estuarine, Coastal and Shelf Science, 212, 311–317.

    Article  CAS  Google Scholar 

  • Brown, S. C., Quegan, S., Morrison, K., Bennett, J. C., & Cookmartin, G. (2003). High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 41, 1602–1610.

    Article  Google Scholar 

  • Demattê, J. A., Sayão, V. M., Rizzo, R., & Fongaro, C. T. (2017). Soil class and attribute dynamics and their relationship with natural vegetation based on satellite remote sensing. Geoderma, 302, 39–51.

    Article  Google Scholar 

  • Dubois, P. C., Van Zyl, J., & Engman, T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33, 915–926.

    Article  Google Scholar 

  • ESA. (2017). The sentinel application platform (SNAP), a common architecture for all sentinel toolboxes being jointly developed by Brockmann consult, array systems computing and C-S. http://step.esa.int/main/download/snap-download/. European Space Agency (ESA).

  • Feng, J., Zhou, J., Wang, L., Cui, X., Ning, C., Wu, H., Zhu, X., & Lin, G. (2017). Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere, 184, 774–783.

    Article  CAS  Google Scholar 

  • Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36, 963–973.

    Article  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1–22.

    Article  Google Scholar 

  • Gao, J. H., Feng, Z. X., Chen, L., Wang, Y. P., Bai, F., & Li, J. (2016). The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China. Ecological Engineering, 95, 160–170.

    Article  Google Scholar 

  • Gedan, K. B., Silliman, B. R., & Bertness, M. D. (2009). Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 1, 117–141.

    Article  Google Scholar 

  • Han, D., Vahedifard, F., & Aanstoos, J. V. (2017). Investigating the correlation between radar backscatter and in situ soil property measurements. International Journal of Applied Earth Observations, 57, 136–144.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning; data mining. New York: Inference and Prediction, Springer.

    Book  Google Scholar 

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for SoilMaps: Update 2015. Rome.

  • Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. New York: McGraw-Hill.

    Book  Google Scholar 

  • Jia, M., Tong, L., Zhang, Y., & Chen, Y. (2013). Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization. Radio Science, 48, 471–481.

    Article  Google Scholar 

  • Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

  • Kasischke, E. S., Melack, J. M., & Dobson, M. C. (1997). The use of imaging radars for ecological applications-a review. Remote Sensing of Environment, 59, 141–156.

    Article  Google Scholar 

  • Li, B., Liao, C. H., Zhang, X. D., Chen, H. L., Wang, Q., Chen, Z. Y., Gan, X. J., Wu, J. H., Zhao, B., Ma, Z. J., Cheng, X. L., Jiang, L. F., & Chen, J. K. (2009). Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecological Engineering, 35, 511–520.

    Article  CAS  Google Scholar 

  • Liddicoat, C., Maschmedt, D., Clifford, D., Searle, R., Herrmann, T., Macdonald, L. M., & Baldock, J. (2015). Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone. Soil Research, 53, 956–973.

    Article  CAS  Google Scholar 

  • Meersmans, J., van Wesemael, B., De Ridder, F., & van Molle, M. (2009). Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma, 152, 43–52.

    Article  CAS  Google Scholar 

  • Metternicht, G. I., & Zinck, J. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85, 1–20.

    Article  Google Scholar 

  • Minasny, B., McBratney, A., Malone, B., & Wheeler, I. (2013). Digital mapping of soil carbon. Advances in Agronomy, 118, 1–47.

  • Mishra, U., Lal, R., Slater, B., Calhoun, F., Liu, D. S., & van Meirvenne, M. (2009). Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal, 73, 614–621.

    Article  CAS  Google Scholar 

  • Mulder, V., De Bruin, S., Schaepman, M., & Mayr, T. (2011). The use of remote sensing in soil and terrain mapping-a review. Geoderma, 162, 1–19.

    Article  CAS  Google Scholar 

  • Nelson, D., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In R. W. Weaver (Ed.), Methods of soil analysis part 2: chemical and microbiological properties (pp. 539–579). Madison: American Society of Agronomy.

    Google Scholar 

  • Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., & Papritz, A. (2018). Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil, 4, 1–22.

    Article  Google Scholar 

  • Pejović, M., Nikolić, M., Heuvelink, G. B., Hengl, T., Kilibarda, M., & Bajat, B. (2018). Sparse regression interaction models for spatial prediction of soil properties in 3D. Computers & Geosciences, 118, 1–13.

    Article  Google Scholar 

  • Poggio, L., & Gimona, A. (2014). National scale 3D modelling of soil organic carbon stocks with uncertainty propagation - an example from Scotland. Geoderma, 232-234, 284–299.

    Article  CAS  Google Scholar 

  • R Core Team. (2017). R: a language and environment for statistical computing. Vienna.

  • Rhoades, J., & Ingvalson, R. (1971). Determining salinity in field soils with soil resistance measurements 1. Soil Science Society of America Journal, 35, 54–60.

    Article  Google Scholar 

  • Santanello, J. A., Peters-Lidard, C. D., Garcia, M. E., Mocko, D. M., Tischler, M. A., Moran, M. S., et al. (2007). Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed. Remote Sensing of Environment, 110, 79–97.

    Article  Google Scholar 

  • Sarti, M., Migliaccio, M., Nunziata, F., Mascolo, L., & Brugnoli, E. (2017). On the sensitivity of polarimetric SAR measurements to vegetation cover: the Coiba National Park, Panama. International Journal of Remote Sensing, 38, 6755–6768.

    Article  Google Scholar 

  • Schuler, D. L., Lee, J. S., Kasilingam, D., & Nesti, G. (2002). Surface roughness and slope measurements using polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 40, 687–698.

    Article  Google Scholar 

  • Sherrod, L., Dunn, G., Peterson, G., & Kolberg, R. (2002). Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal, 66, 299–305.

    Article  CAS  Google Scholar 

  • Solon, J., Roo-Zielińska, E., & Degorski, M. (2012). Landscape scale of topography-soil-vegetation relationship: influence of land use and land form. Polish Journal of Ecology, 60, 3–17.

    CAS  Google Scholar 

  • Srivastava, H. S., Parul, P., & Ranganath, R. N. (2006). How far SAR has fulfilled its expectation for soil moisture retrieval. In Microwave remote sensing of the atmosphere and environment (Vol. 6410). Bellingham: International Society for Optics and Photonics.

    Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58, 267–288.

    Google Scholar 

  • Tibshirani, R., Wainwright, M., & Hastie, T. (2015). Statistical learning with sparsity: the lasso and generalizations. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Ulaby, F. T., Batlivala, P. P., & Dobson, M. C. (1978). Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part I-bare soil. IEEE Transactions on Geoscience Electronics, 16, 286–295.

    Article  Google Scholar 

  • Vaudour, E., Bel, L., Gilliot, J. M., Coquet, Y., Hadjar, D., Cambier, P., Michelin, J., & Houot, S. (2013). Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands. Soil Science Society of America Journal, 77, 2122–2139.

    Article  CAS  Google Scholar 

  • Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J. F., et al. (2017). Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199, 415–426.

    Article  Google Scholar 

  • Veronesi, F., Corstanje, R., & Mayr, T. (2014). Landscape scale estimation of soil carbon stock using 3D modelling. Science of the Total Environment, 487, 578–586.

    Article  CAS  Google Scholar 

  • Wang, C., Pei, X., Yue, S., & Wen, Y. (2016a). The response of Spartina alterniflora biomass to soil factors in Yancheng, Jiangsu Province, PR China. Wetlands, 36, 229–235.

    Article  CAS  Google Scholar 

  • Wang, H. Q., Piazza, S. C., Sharp, L. A., Stagg, C. L., Couvillion, B. R., Steyer, G. D., et al. (2016b). Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across Coastal Louisiana, U.S.A. Journal of Coastal Research, 33, 507–517.

    Article  Google Scholar 

  • Yang, R. M., & Guo, W. W. (2018). Exotic Spartina alterniflora enhances the soil functions of a coastal ecosystem. Soil Science Society of America Journal, 92, 901–909.

    Article  Google Scholar 

  • Yang, R. M., Rossiter, D. G., Liu, F., Lu, Y., Yang, F., Yang, F., et al. (2015). Predictive mapping of topsoil organic carbon in an alpine environment aided by Landsat TM. PLoS One, 10, e0139042.

    Article  Google Scholar 

  • Yang, W., Zhao, H., Leng, X., Cheng, X., & An, S. (2017). Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena, 156, 281–289.

    Article  CAS  Google Scholar 

  • Yuan, J. J., Ding, W. X., Liu, D. Y., Kang, H., Freeman, C., Xiang, J., et al. (2015). Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21, 1567–1580.

    Article  Google Scholar 

  • Zhang, T. T., Zeng, S., Gao, Y., Ouyang, Z., Li, B., Fang, C., & Zhao, B. (2011). Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11, 1552–1562.

    Article  Google Scholar 

  • Zhang, C., Mishra, D. K., & Pennings, S. C. (2019). Mapping salt marsh soil properties using imaging spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 221–234.

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 41701236), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB210004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Min Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RM., Guo, WW. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Environ Monit Assess 191, 462 (2019). https://doi.org/10.1007/s10661-019-7580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7580-3

Keywords

Navigation