Skip to main content

Advertisement

Log in

Potential effects of exploiting the Yunfu pyrite mine (southern China) on soil: evidence from analyzing trace elements in surface soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Trace element contamination caused by mining is a serious environmental problem. The potential effects of exploiting the Yunfu pyrite mine (southern China) on soil were investigated by determining trace elements in 56 surface soil samples from the vicinity of the Yunfu pyrite mine. The samples were acid dissolved and measured by an inductively coupled plasma mass spectrometry (ICP-MS). Principal component analysis and hierarchical cluster analysis were used to identify factors influencing the trace element contents and possible sources of the trace elements. The degree of trace element pollution was determined using the geological accumulation index Igeo. Monte Carlo simulations were used to assess the health risks posed. The results show that (1) six factors (parent material, mining activities, ore composition, rainfall, terrain, and other inputs) strongly affected the trace element contents of the soil samples. (2) There were three groups of trace elements, according to their possible sources. One group (Cs, Ga, Ge, Hf, Nb, Rb, Ta, Th, Ti, U, and Zr) mainly originated in parent rocks. Another group (Cr, Ni, Sr, and V) was mainly supplied by industrial plants and traffic emissions. The third group (Ba, Co, Cu, Mn, Pb, and Zn) was mainly supplied through pyrite ore exploitation processes. (3) Some samples were slightly to moderately polluted with Cs, Ga, Ge, Nb, Rb, Ta, and Ti. Most samples were moderately to highly polluted with Ba, Co, Cu, Mn, Pb, and Zn. (4) Trace elements in soil pose strong non-carcinogenic and carcinogenic health risks to people (particularly children) living near the Yunfu pyrite mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achterberg, E. P., Braungardt, C., Morley, N. H., Elbaz-Poulichet, F., & Leblanc, M. (1999). Impact of Los Frailes mine spill on riverine, estuarine and coastal waters in southern Spain. Water Research, 33(16), 3387–3394.

    Article  CAS  Google Scholar 

  • Ali, M. A., & Lentz, D. R. (2011). Mineralogy, geochemistry and age dating of shear zone-hosted Nb-Ta-, Zr-Hf-, Th-, U-bearing granitic rocks in the Ghadir and El-Sella areas, South Eastern Desert, Egypt. Chinese Journal of Geochemistry, 30(04), 453–478.

    Article  CAS  Google Scholar 

  • Alvarez-Valero, A. M., Saez, R., Perez-Lopez, R., Delgado, J., & Nieto, J. M. (2009). Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam (Iberian Pyrite Belt, SW Spain) based on a sequential extraction procedure. Journal of Geochemical Exploration, 102(2), 87–94. https://doi.org/10.1016/j.gexplo.2009.02.005.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2012). Multivariate statistical analysis of heavy metals in soils of a Pb-Zn mining area, India. Environmental Monitoring and Assessment, 184(7), 4191–4206. https://doi.org/10.1007/s10661-011-2255-8.

    Article  CAS  Google Scholar 

  • Barreiro, R., Real, C., & Carballeira, A. (1994). Heavy-metal horizontal distribution in surface sediments from a small estuary (Pontedeume, Spain). Science of the Total Environment, 154(1), 87–100. https://doi.org/10.1016/0048-9697(94)90616-5.

    Article  CAS  Google Scholar 

  • Bradley, S. B., & Cox, J. J. (1986). Heavy-metals in the Hamps and Manifold Valleys, North Staffordshire, UK—distribution in floodplain soils. Science of the Total Environment, 50, 103–128. https://doi.org/10.1016/0048-9697(86)90354-2.

    Article  CAS  Google Scholar 

  • Candeias, C., da Silva, E. F., Salgueiro, A. R., Pereira, H. G., Reis, A. P., Patinha, C., et al. (2011). The use of multivariate statistical analysis of geochemical data for assessing the spatial distribution of soil contamination by potentially toxic elements in the Aljustrel mining area (Iberian Pyrite Belt, Portugal). Environmental Earth Sciences, 62(7), 1461–1479. https://doi.org/10.1007/s12665-010-0631-2.

  • Cao, H., Chen, J., Zhang, J., Hui, Z., Li, Q., & Yi, M. (2010). Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Environmental Sciences, 22(11), 1792–1799.

    Article  CAS  Google Scholar 

  • Chang, X. Y., Chen, Y. H., Liu, J. Y., Chen, N., Wu, Y. J., & Fu, S. M. (2008). The environmental impact of thallium sulfide resource exploitation in Western Guangdong: an element and Lead isotopic tracing study. Acta Geoscientica Snica, 29(06), 765–768 in Chinese with English abstract.

    CAS  Google Scholar 

  • Chen, X. G., Qin, Y. J., Wu, Q. H., & Chen, X. Y. (1989). An environmental impact assessment on the double superphosphate factory of Yunfu sulfurous iron ore. Supplement to the. Acta Scientiarum Naturalium Universitatis Sunyatseni, 8(03), 1–68 in Chinese with English abstract.

    Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., Wu, J., & Wang, J. (2016). Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 144, 1002–1011.

    Article  CAS  Google Scholar 

  • Cheng, X., Danek, T., Drozdova, J., Huang, Q., Qi, W., Zou, L., Yang, S., Zhao, X., & Xiang, Y. (2018). Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan. Southwest China. Environmental Monitoring & Assessment, 190(4), 194.

    Article  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Science of the Total Environment, 373(2–3), 488–500. https://doi.org/10.1016/j.scitotenv.2006.11.037.

    Article  CAS  Google Scholar 

  • Christou, A., Eliadou, E., Michael, C., Hapeshi, E., & Fatta-Kassinos, D. (2014). Assessment of long-term wastewater irrigation impacts on the soil geochemical properties and the bioaccumulation of heavy metals to the agricultural products. Environmental Monitoring & Assessment, 186(8), 4857–4870.

    Article  CAS  Google Scholar 

  • Ding, Q., Cheng, G., Wang, Y., & Zhuang, D. F. (2017). Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 578, 577–585. https://doi.org/10.1016/j.scitotenv.2016.11.001.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency of China. (1990). The background contents of trace elements in Chinese soil. Beijing: China Environmental Science Press (in Chinese).

  • Environmental Protection Agency of China. (1995). Environmental quality standard for soils (GB15618–1995). Beijing: China Environmental Science Press (in Chinese).

  • Fernandez-Caliani, J. C., Barba-Brioso, C., Gonzalez, I., & Galan, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air And Soil Pollution, 200(1–4), 211–226. https://doi.org/10.1007/s11270-008-9905-7.

    Article  CAS  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Science of the Total Environment, 330(1–3), 115–129. https://doi.org/10.1016/j.scitotenv.2004.03.038.

    Article  CAS  Google Scholar 

  • Förstner, U., Ahlf, W., Calmano, W., & Kersten, M. (1990). Contributions from environmental geochemistry to water quality management. In Sediment criteria development (pp. 311–338). Berlin Heidelberg: Springer.

    Google Scholar 

  • Frohne, T., Diaz-Bone, R. A., Du Laing, G., & Rinklebe, J. (2015). Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. Journal of Soils and Sediments, 15(3), 623–633. https://doi.org/10.1007/s11368-014-1036-8.

    Article  CAS  Google Scholar 

  • Fryer, M., Collins, C. D., Ferrier, H., Colvile, R. N., & Nieuwenhuijsen, M. J. (2006). Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications. Environmental Science & Policy, 9(3), 261–274.

    Article  Google Scholar 

  • Galán, E., González, I., & Fernández-Caliani, J. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. Science of the Total Environment, 286(1), 167–179.

    Article  Google Scholar 

  • Galan, E., Gomez-Ariza, J. L., Gonzalez, I., Fernandez-Caliani, J. C., Morales, E., & Giraldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18(3), 409–421. https://doi.org/10.1016/S0883-2927(02)00092-6.

  • Gallego, J. L. R., Ordonez, A., & Loredo, J. (2002). Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International, 27(7), 589–596. https://doi.org/10.1016/S0160-4120(01)00115-5.

    Article  CAS  Google Scholar 

  • Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain dam, Jordan. Environmental Monitoring and Assessment, 178(1–4), 95–109. https://doi.org/10.1007/s10661-010-1675-1.

  • Gil, F., Capitan-Vallvey, L. F., De Santiago, E., Ballesta, J., Pla, A., Hernandez, A. F., et al. (2006). Heavy metal concentrations in the general population of Andalusia, south of Spain—a comparison with the population within the area of influence of Aznalcollar mine spill (SW Spain). Science of the Total Environment, 372(1), 49–57. https://doi.org/10.1016/j.scitotenv.2006.08.004.

  • Goncalves, M. A., Figueiras, J., Pinto, C., Neng, N., Sa-Pereira, P., & Batista, M. J. (2007). Biogeochemical and mineralogical characteristics of the acid mine drainage system in Aljustrel and S. Domingos mines, Iberian Pyrite Belt. Geochimica et Cosmochimica Acta, 71(15), A341–A341.

    Google Scholar 

  • Han, Y. W., Ma, Z. D., Zhang, H. F., Zhang, B. R., Li, F. L., Gao, S., et al. (2003). Geochemistry. Beijing: Geological Publishing House in Chinese.

    Google Scholar 

  • Huang, L. M., Deng, C. B., Huang, N., & Huang, X. J. (2013). Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb-Zn mine in Guangxi Zhuang autonomous region, China. Environmental Earth Sciences, 68(5), 1331–1348. https://doi.org/10.1007/s12665-012-1831-8.

    Article  CAS  Google Scholar 

  • Hwang, C. K., Cha, J. M., Kim, K. W., & Lee, H. K. (2001). Application of multivariate statistical analysis and a geographic information system to trace element contamination in the Chungnam coal mine area, Korea. Applied Geochemistry, 16(11–12), 1455–1464. https://doi.org/10.1016/S0883-2927(01)00053-1.

    Article  CAS  Google Scholar 

  • Jiang, Y., Chao, S., Liu, J., Yue, Y., Chen, Y., Zhang, A., et al. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, 1658–1668.

    Article  CAS  Google Scholar 

  • Junaid, M., Hashmi, M., Tang, Y.-M., Malik, R., & Pei, D.-S. (2017). Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Scientific Reports, 7(1), 8848. https://doi.org/10.1038/s41598-017-09075-7.

    Article  CAS  Google Scholar 

  • Kou, S. W., Cai, S. Y., Zhang, B., He, J. M., Huang, S. Y., Zheng, J. H., et al. (2011). Speciation distribution and potential ecological risk assessment of Cd and Pb in Yunfu pyrite area. Journal of Jinan University, 32(1), 48–52 in Chinese with English abstract.

    Google Scholar 

  • Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcollar mine spill - heavy metal content and mobility in soils and sediments of the Guadiamar river valley (SW Spain). Science of the Total Environment, 367(2–3), 855–871. https://doi.org/10.1016/j.scitotenv.2005.12.027.

    Article  CAS  Google Scholar 

  • Leng, C. B., Zhang, X. C., Wang, S. X., Qin, Z. J., Wu, K. W., & Reng, T. (2009). Advances of researches on the evolution of ore-forming fluids and the vapor transport of metals in magmatic-hydrothermal systems. Geological Review, 55(01), 100–112 in Chinese with English abstract.

    CAS  Google Scholar 

  • Li, X. P., Qi, J. Y., Wang, C. L., Liu, J., Wang, J., Yang, C. X., et al. (2009). Environmental quality of soil polluted by thallium and Lead in pyrite deposit area of Western Guangdong Province. Journal of Agro-Environment Science, 28(3), 496–501 in Chinese with English abstract.

    Google Scholar 

  • Li, X. P., Qi, J. Y., Wang, C. L., & Chen, Y. H. (2011). Distribution of heavy metals in waters and pollution assessment in thallium contaminated area of Yunfu, Guangdong. Environment Science, 32(5), 1321–1328 in Chinese with English abstract.

    CAS  Google Scholar 

  • Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090.

    Article  CAS  Google Scholar 

  • Liu, J. Y., Chang, X. Y., & Tu, X. L. (2006). The application of element and lead isotope tracing to thallium contamination in soil of the Yunfu pyrite mine. Geophysical & Geochemical Exploration, 30(4), 348–353 in Chinese with English abstract.

    CAS  Google Scholar 

  • Liu, J., Wang, J., Qi, J. Y., & Wang, C. L. (2010a). Evaluation of thallium contamination from an open-mined Yunfu thallium-bearing pyrite deposit, China. International Conference on Bioinformatics and Biomedical Engineering (pp. 1–4).IEEE.

  • Liu, X. S., Yi, R. H., Wu, J. B., Fang, K., & Liu, H. X. (2010b). Spatial distribution of heavy metal contents in soils of YunFu pyrite mining area. Chinese Journal of Environmental Engineering, 4(12), 2843–2847 in Chinese with English abstract.

    CAS  Google Scholar 

  • Lopez, M., Gonzalez, I., & Romero, A. (2008). Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, Sw Spain). Environmental Geology, 54(4), 805–818. https://doi.org/10.1007/s00254-007-0864-x.

    Article  CAS  Google Scholar 

  • Martinez, L. L. G., & Poleto, C. (2014). Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (I-geo). Journal of Soils and Sediments, 14(7), 1251–1257. https://doi.org/10.1007/s11368-014-0871-y.

    Article  CAS  Google Scholar 

  • Meharg, A., Osborn, D., Pain, D., Sánchez, A., & Naveso, M. (1999). Contamination of Doñana food-chains after the Aznalcóllar mine disaster. Environmental Pollution, 105(3), 387–390.

    Article  CAS  Google Scholar 

  • Mi, B. X., Liu, H., Wang, L. J., Zhang, Y., & Tang, S. Y. (2014). Geochemical behavior of Zr and Hf in magmatism. New Technology and New Process, (07) (pp. 61–64) in Chinese with English abstract.

    Google Scholar 

  • Nieto, J. M., Sarmiento, A. M., Olias, M., Canovas, C. R., Riba, I., Kalman, J., et al. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva estuary. Environment International, 33(4), 445–455. https://doi.org/10.1016/j.envint.2006.11.010.

    Article  Google Scholar 

  • Olias, M., Canovas, C. R., Nieto, J. M., & Sarmiento, A. M. (2006). Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Applied Geochemistry, 21(10), 1733–1749. https://doi.org/10.1016/j.apgeochem.2006.05.009.

    Article  CAS  Google Scholar 

  • Ouyang, T. P., Bian, Y., Tian, C. J., Kuang, Y. Q., Huang, N. S., Zhu, Z. Y., et al. (2013). Study of magnetic properties for a soil profile from the Yunfu pyrite zone. Ecology and Environmental Sciences, 22(9), 1602–1607 in Chinese with English abstract.

    Google Scholar 

  • Pajević, S., Arsenov, D., Nikolić, N., Borišev, M., Orčić, D., Župunski, M., & Mimica-Dukić, N. (2018). Heavy metal accumulation in vegetable species and health risk assessment in Serbia. Environmental Monitoring & Assessment, 190(8), 459.

    Article  Google Scholar 

  • Pan, X.-D., Wu, P.-G., & Jiang, X.-G. (2016). Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports, 6(1). https://doi.org/10.1038/srep20317.

  • Penalosa, J. M., Carpena, R. O., Vazquez, S., Agha, R., Granado, A., Sarro, M. J., et al. (2007). Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge. Science of the Total Environment, 378(1–2), 199–204. https://doi.org/10.1016/j.sciotenv.2007.01.047.

    Article  CAS  Google Scholar 

  • Peng, C., Cai, Y., Wang, T., Xiao, R., & Chen, W. (2016). Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: an urbanization-affected drinking water supply area. Scientific Reports, 6(1), 37084. https://doi.org/10.1038/srep37084.

    Article  CAS  Google Scholar 

  • Pourang, N., Nikouyan, A., & Dennis, J. H. (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environmental Monitoring and Assessment, 109(1–3), 293–316. https://doi.org/10.1007/s10661-005-6287-9.

    Article  CAS  Google Scholar 

  • Riba, I., DelValls, T., Forja, J., & Gómez-Parra, A. (2002). Influence of the Aznalcóllar mining spill on the vertical distribution of heavy metals in sediments from the Guadalquivir estuary (SW Spain). Marine Pollution Bulletin, 44(1), 39–47.

    Article  CAS  Google Scholar 

  • Romero, A., Gonzalez, I., Fernandez, I. M., & Galan, E. (2013). Evaluation of trace element contamination changes in soils using a new normalization factor application to the Guadiamar soils (SW Spain) affected by a mine spill in 1998. Journal of Geochemical Exploration, 124, 29–39. https://doi.org/10.1016/j.gexplo.2012.07.010.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013). A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, 201, 43–56. https://doi.org/10.1016/j.cis.2013.10.005.

  • Singh, S., Raju, N. J., & Nazneen, S. (2015). Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India. Environmental Monitoring & Assessment, 187(6), 1–12.

    Article  Google Scholar 

  • Smith, R. L. (2010). Use of Monte Carlo simulation for human exposure assessment at a superfund site. Risk Analysis, 14(4), 433–439.

    Article  Google Scholar 

  • Sola, C., Burgos, M., Plazuelo, A., Toja, J., Plans, M., & Prat, N. (2004). Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Science of the Total Environment, 333(1–3), 109–126. https://doi.org/10.1016/j.scitotenv.2004.05.011.

    Article  CAS  Google Scholar 

  • Tang, Z. H., Huang, N. S., Ouangyang, T. P., Kuang, Y. Q., Li, M. K., Hu, Q., et al. (2016). Study on the influence of pyrite mining in Yunfu on the contents of rare earth elements in surrounding top soils. GEOCHIMICA, 45(05), 527–536 in Chinese with English abstract.

    CAS  Google Scholar 

  • Tume, P., Bech, J., Tumec, L., Bech, J., Reverter, F., Longan, L., et al. (2008). Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain). Journal of Geochemical Exploration, 96(2–3), 94–105. https://doi.org/10.1016/j.gexplo.2007.03.003.

    Article  CAS  Google Scholar 

  • USEPA. (1996). Method 3052:Microwave assisted acid digestion of siliceous and organically based matrices SW-846. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2011). Exposure factors handbook (final ed). Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  • Wang, C. L., Chen, Y. H., Pan, J. Y., Zhang, P., Qi, J. Y., Liu, J., et al. (2010). Speciation analysis of metals (Tl, cd and Pb) in Tl-containing pyrite and its cinder from Yunfu mine, China, by ICP-MS with sequential extraction. Chinese Journal of Geochemistry, 29(1), 113–119 in Chinese with English abstract.

    Article  Google Scholar 

  • Wang, D. F., Fu, S. M., Wu, L. Q., Chang, X. Y., Chen, N., Xiao, F., et al. (2012). Speciation distribution characteristics of heavy metals in polluted river sediments of pyrite mine, Western Guangdong. Advances in Earth Science, 27(S1), 419–422 in Chinese with English abstract.

    Google Scholar 

  • Wu, J. B. (2010). Study on bioavailabilities of soil heavy metals in Yunfu pyrite area. Journal of Anhui Agricultural Sciences, 38(2), 852–855 in Chinese with English abstract.

    CAS  Google Scholar 

  • Wu, Y. J., Chen, Y. H., Yang, C. X., Chang, X. Y., Wang, C. L., & Liang, C. Y. (2011). Study of symbolic element in roasting slag of pyrite by inductively coupled plasma mass spectrometry. Spectroscopy and Spectral Analysis, 31(9), 2561–2564.

    CAS  Google Scholar 

  • Xie, W. B., Chen, S. L., & Chen, Y. H. (2001a). Chemical mobility of toxic trace elements in Yunfu pyrite and its slag at surface conditions. GEOCHIMICA, 30(05), 465–469 in Chinese with English abstract.

    CAS  Google Scholar 

  • Xie, W. B., Chen, Y. H., Chen, S. L., Wang, G. L., & Chang, X. Y. (2001b). Distribution of thallium in pyrite ores and its cinders of Yunfu Pyrite Mine, Guangdong. Multipurpose Utilization of Mineral Resources, 2, 23–25 in Chinese with English abstract.

    Google Scholar 

  • Yang, R. Y., Cao, J. J., Kang, X. G., & Yin, Z. Q. (1997). The characteristics and genesis of Yunfu pyrite deposit in Guangdong Province. Acta Scientiarum Naturalium Universitatis Sunyatseni, 36(04), 80–84 in Chinese with English abstract.

    Google Scholar 

  • Zhang, L. C., & Liu, T. (2002). Practice and explore for The Environmental Sustainable Development of Yunfu Pyrite Mine Mining Technology, 2(01), 1–2+7(in Chinese with English abstract).

  • Zhang, X. Y., Lin, F. F., Wong, M. T. F., Feng, X. L., & Wang, K. (2009). Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China. Environmental Monitoring & Assessment, 154(1–4), 439–449.

    Article  CAS  Google Scholar 

  • Zhang, Z., Yang, X., & Yang, S. (2018). Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China. Environmental Monitoring & Assessment, 190(2), 69.

    Article  Google Scholar 

  • Zhen, Y. M., Zhong, W., Peng, X. Y., Xue, J. B., Ma, Q. H., & Cai, Y. (2009). Chemical composition of precipitation at Yunfu City in Western Guangdong during 2005–2006. Tropical Geography, 29(01), 20–25 in Chinese with English abstract.

    Google Scholar 

Download references

Acknowledgments

This research was partly funded by the Natural Science Foundation of China (grant no. 41741012), the Guangzhou Science Technology and Innovation Commission (grant no. 201707010402), and the NSFC-Guangdong Joint Fund (grant no. U1201131). We thank Gareth Thomas, Ph.D, from Liwen Bianji, Edanz Group China, for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-ping Ouyang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Zh., Ouyang, Tp., Li, Mk. et al. Potential effects of exploiting the Yunfu pyrite mine (southern China) on soil: evidence from analyzing trace elements in surface soil. Environ Monit Assess 191, 395 (2019). https://doi.org/10.1007/s10661-019-7523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7523-z

Keywords

Navigation