Skip to main content
Log in

Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In South America, Colombia is known as an important oil-producing country. However, the environmental impact of crude oil industry has not been studied deeply and few studies have been carried out for evaluating responses of algae and its adaptation under specific conditions. Enzymatic and physiological effects in Chlorella vulgaris and its potential for bioremediation after exposure to produced water (PW) were assessed using different PW concentrations (0, 25, 50, 75 and 100%) and crude oil. Variables such as cell density, growth rate (μ), percentage of growth inhibition (% I), chlorophyll a and b and cell diameter were evaluated during 5 days. Furthermore, enzymatic biomarkers such as superoxide dismutase (SOD) and catalase (CAT) were also measured. Results showed that the treatment with 100% PW had the highest cell density and μ; similarly, 25% PW treatment had a similar behaviour, being these two treatments with the highest growth. A dose-dependent response was seen for chlorophyll a and b and cell diameter, showing significant differences between treatments and the control. Different levels of SOD and CAT were observed in algae exposed to PW. At 24 h, an increase in SOD and CAT activity was observed, probably due to effects caused by xenobiotics. After 72 h, a decrease in the activity of both enzymes was observed. The results evidenced that C. vulgaris can adapt easily to PW, showing an increase on its growth and stabilisation in its antioxidant activity. Additionally, cell diameter results and decrease of hydrocarbons and phenols show the potential of these algae to degrade xenobiotics from PW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Shanab, R. A. I., Ji, M.-K., Kim, H.-C., Paeng, K.-J., & Jeon, B.-H. (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115(0), 257–264. https://doi.org/10.1016/j.jenvman.2012.11.022.

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341.

    Article  CAS  Google Scholar 

  • Altenburger, R., Ait-Aissa, S., Antczak, P., Backhaus, T., Barceló, D., Seiler, T. B., ... & de Aragão Umbuzeiro, G. (2015). Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Science of the total environment, 512, 540-551. https://doi.org/10.1016/j.scitotenv.2014.12.057

  • Bakke, T., Klungsøyr, J., & Sanni, S. (2013). Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Marine Environmental Research, 92(0), 154–169. https://doi.org/10.1016/j.marenvres.2013.09.012.

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276–287.

    Article  CAS  Google Scholar 

  • Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification, enumeration and use as bioindicators. Wiley.

  • Björkman, O. (1981). Responses to different quantum flux densities. In Physiological plant ecology I (pp. 57–107). Springer.

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

  • Calabrese, E. J., & Blain, R. B. (2009). Hormesis and plant biology. Environmental Pollution, 157(1), 42–48. https://doi.org/10.1016/j.envpol.2008.07.028.

  • Clijsters, H., Cuypers, A., & Vangronsveld, J. (1999). Physiological responses to heavy metals in higher plants; defence against oxidative stress. Zeitschrift für Naturforschung C, 54(9–10), 730–734.

    Article  CAS  Google Scholar 

  • Dawes, C. J. (1998). Marine botany. John Wiley & Sons.

  • Dazy, M., Masfaraud, J. F., & Ferard, J. F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75(3), 297–302. https://doi.org/10.1016/j.chemosphere.2008.12.045.

  • de Baat, M. L., Bas, D. A., van Beusekom, S. A. M., Droge, S. T. J., van der Meer, F., de Vries, M., Verdonschot, P. F. M., & Kraak, M. H. S. (2018). Nationwide screening of surface water toxicity to algae. Science of the Total Environment, 645, 780–787. https://doi.org/10.1016/j.scitotenv.2018.07.214.

  • Del Vento, S., & Dachs, J. (2002). Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environmental Toxicology and Chemistry, 21(10), 2099–2107.

    Article  Google Scholar 

  • Desai, S. R., Verlecar, X. N., Ansari, Z. A., Jagtap, T. G., Sarkar, A., Vashistha, D., et al. (2010). Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure. Water Research, 44(7), 2235–2244. https://doi.org/10.1016/j.watres.2009.12.048.

  • di Toppi, L. S., Musetti, R., Marabottini, R., Corradi, M. G., Vattuone, Z., Favali, M. A., et al. (2004). Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Functional Plant Biology, 31(4), 329–338.

    Article  CAS  Google Scholar 

  • Díaz-Báez, M. C., López, M. C. B., & Ramírez, A. J. E. (2004). Pruebas de toxicidad acuática: fundamentos y métodos. Bogotá: Universidad Nacional de Colombia.

  • Dimitrova, M. S., Tishinova, V., & Velcheva, V. (1994). Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 108(1), 43–46.

  • El-Dib, M. A., Abou-Waly, H. F., & El-Naby, A. M. H. (1997). Impact of fuel oil on the freshwater alga Selenastrum capricornutum. Bulletin of Environmental Contamination and Toxicology, 59(3), 438–444. https://doi.org/10.1007/s001289900497.

  • El-Sheekh, M. M., Hamouda, R. A., & Nizam, A. A. (2013). Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. International Biodeterioration & Biodegradation, 82(0), 67–72. https://doi.org/10.1016/j.ibiod.2012.12.015.

  • Elstner, E. F., & Osswald, W. (1994). Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 102, 131–154.

    Article  Google Scholar 

  • Fan, C. W., & Reinfelder, J. R. (2003). Phenanthrene accumulation kinetics in marine diatoms. Environmental Science & Technology, 37(15), 3405–3412.

    Article  CAS  Google Scholar 

  • Franqueira, D., Orosa, M., Torres, E., Herrero, C., & Cid, A. (2000). Potential use of flow cytometry in toxicity studies with microalgae. Science of the Total Environment, 247(2), 119–126.

    Article  CAS  Google Scholar 

  • Gao, Q. T., & Tam, N. F. Y. (2011). Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere, 82(3), 346–354. https://doi.org/10.1016/j.chemosphere.2010.10.010.

  • Gómez- Luna, L. M., & Ramírez, Z. (2004). Microalgas como biomonitores de contaminación. Revista Cubana de Quimica, 16(2), 34–48.

    Google Scholar 

  • Inupakutika, M. A., Sengupta, S., Devireddy, A. R., Azad, R. K., & Mittler, R. (2016). The evolution of reactive oxygen species metabolism. Journal of Experimental Botany, erw382.

  • Jiang, Z., Huang, Y., Xu, X., Liao, Y., Shou, L., Liu, J., Chen, Q., & Zeng, J. (2010). Advance in the toxic effects of petroleum water accommodated fraction on marine plankton. Acta Ecologica Sinica, 30(1), 8–15.

    Article  Google Scholar 

  • Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo a pyrene. International Biodeterioration & Biodegradation, 45(1), 57–88.

    Article  CAS  Google Scholar 

  • Ke, L., Luo, L., Wang, P., Luan, T., Tam, N.F.-Y., 2010. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresource Technology 101, 6950–6961.

  • Kong, Q., Zhu, L., & Shen, X. (2010). The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. Journal of Hazardous Materials, 178(1–3), 282–286. https://doi.org/10.1016/j.jhazmat.2010.01.074.

  • Koshikawa, H., Xu, K., Liu, Z., Kohata, K., Kawachi, M., Maki, H., et al. (2007). Effect of the water-soluble fraction of diesel oil on bacterial and primary production and the trophic transfer to mesozooplankton through a microbial food web in Yangtze estuary, China. Estuarine, Coastal and Shelf Science, 71(1), 68–80.

    Article  Google Scholar 

  • Lei, A., Hu, Z., Wong, Y., & Tam, N. F. (2006). Antioxidant responses of microalgal species to pyrene. Journal of Applied Phycology, 18(1), 67–78.

  • Lei, A.-P., Hu, Z.-L., Wong, Y.-S., Tam, N.F.-Y., (2007). Removal of fluoranthene and pyrene by different microalgal species. Bioresource Technology 98, 273–280.

  • Liu, N., Xiong, D., Gao, H., Liu, W., Gong, W., & Liu, K. (2006). Study on acute toxicity of three fuel oil to marine Chlorella. Marine Environmental Science, 25, 29–32.

    Google Scholar 

  • Lopez Montoya, C. (2011). Aplicación del ensayo cometa en la asignación del daño genomico por benzo [a] pireno en Dunaliella tertiolecta. Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico.

  • Mallick, N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: Response of the antioxidant system. Journal of Plant Physiology, 161(5), 591–597. https://doi.org/10.1078/0176-1617-01230.

  • McGinn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., MacQuarrie, S. P., Black, F. J., Frigon, J. C., Guiot, S. R., & O’Leary, S. J. B. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1(2), 155–165. https://doi.org/10.1016/j.algal.2012.05.001.

  • Munoz, R., & Guieysse, B. (2006). Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Research, 40(15), 2799–2815. https://doi.org/10.1016/j.watres.2006.06.011.

  • Muñoz-Peñuela, M., Ramírez-Merlano, J., Otero-Paternina, A., Medina-Robles, V., Cruz-Casallas, P., & Velasco-Santamaría, Y. (2012). Efecto del medio de cultivo sobre el crecimiento y el contenido proteico de Chlorella vulgaris. Rev Colomb Cienc Pecu, (25), 438–449.

  • OECD (2006). Freshwater alga and cyanobacteria, growth inhibition test. Guidelines for the testing of chemicals. (pp. 25). Estados Unidos.

  • Ortiz- Moreno, M. L., Cortés - Castillo, C. E., Sánchez-Villarraga, J., Padilla, J., & OteroPaternina, A. M. (2012). Evaluación del crecimiento de la microalga chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Revista de la Orinoquia, 16(1), 11–20.

    Article  Google Scholar 

  • OTA (1991). Office of Technology Assessment,Bioremediation for marine oil spills-background paper. In U. Congress (Ed.), (Vol. OTA-BP-O-70). Washington, DC. USA: Government Printing Office.

  • Otero-Paternina, A., Cruz-Casallas, P. E., & Velasco-Santamaria, Y. M. (2013). Evaluación del efecto del hidrocarburo fenantreno sobre el crecimiento de Chlorella vulgaris (CHLORELLACEAE). Acta Biológica Colombiana, 18, 87–98.

    CAS  Google Scholar 

  • Otero-Paternina, A. M. (2011). Evaluación toxicologica del impacto de efluentes de la explotacion petrolera en la región de la orinoquia colombiana, utilizando especies de microalgas e invertebrados nativos Universidad de los Llanos. Colombia: Villavicencio.

    Google Scholar 

  • Pokora, W., & Tukaj, Z. (2010). The combined effect of anthracene and cadmium on photosynthetic activity of three Desmodesmus (Chlorophyta) species. Ecotoxicology and Environmental Safety, 73(6), 1207–1213. https://doi.org/10.1016/j.ecoenv.2010.06.013.

  • Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2014). Toxicity and oxidative stress induced by used and unused motor oil on freshwater microalga, Pseudokirchneriella subcapitata. Environmental Science and Pollution Research, 1–12.

  • Ramanan, R., Kim, B.-H., Cho, D.-H., Oh, H.-M., & Kim, H.-S. (2016). Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34(1), 14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003.

  • Sipáuba-Tavares, L., & Rocha, O. (2003). Produção de Plâncton (Fitoplâncton e Zooplâncton) para alimentação de organismos aquáticos. São Carlos, Brasil: RiMa.

  • Spoljaric, D., Cipak, A., Horvatic, J., Andrisic, L., Waeg, G., Zarkovic, N., & Jaganjac, M. (2011). Endogenous 4-hydroxy-2-nonenal in microalga Chlorella kessleri acts as a bioactive indicator of pollution with common herbicides and growth regulating factor of hormesis. Aquatic Toxicology, 105(3–4), 552–558. https://doi.org/10.1016/j.aquatox.2011.08.007.

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical hand book of seawater analysis (Second edition ed.). Ottawa, Canada: The alger press Ltd.

  • Torres, K., & Zuluaga, T. (2009). Biorremediación de suelos contaminados por hidrocarburos. In Universidad Nacional de Colombia. Colombia: Medellin.

    Google Scholar 

  • Vargas Gallego, P. A., Cuéllar, R. R., & Dussán, J. (2004). Biorremediación de residos de petróleo. Hipotesis: Apuntes cinetificos uniandinos, (1), 42–49.

  • Vega-Lopez, A., Ayala-Lopez, G., Posadas-Espadas, B. P., Olivares-Rubio, H. F., & Dzul-Caamal, R. (2013). Relations of oxidative stress in freshwater phytoplankton with heavy metals and polycyclic aromatic hydrocarbons. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 165(4), 498–507. https://doi.org/10.1016/j.cbpa.2013.01.026.

  • Vera-Parra, N. F., Marciales-Caro, L. J., Otero-Paternina, A. M., Cruz-Casallas, P. E., & Velasco-Santamaría, Y. M. (2011). Impacto del agua asociada a la producción de una explotación petrolera sobre la comunidad fitoperifítica del rio Acacias (Meta, Colombia) durante la temporada de lluvias. Orinoquia, 15(1), 31–40.

    Article  Google Scholar 

  • Vera, G., Tam, J., & Pinto, E. (2009). Efectos ecotoxicologicos del petroleo crudo, diesel 2 y kerosene sobre el crecimiento poblacional de la microalga Chaetoceros gracilis Schutt. Ecología Aplicada, 8(1–2), 1–7.

    Article  Google Scholar 

  • Wang, L., Zheng, B., 2008. Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences 20, 1363–1372.

  • Wang, X., Zhang, J., Shi, X., Zhu, C., An, Y., Jun, S., et al. (2002). Determination of toxicokinetic parameters for bioconcentration of water-soluble fraction of petroleum hydrocarbon associated with No. 0 diesel in Changjiang Estuary and Jiaozhou Bay: model versus mesocosm experiments. Archives of Environmental Contamination and Toxicology, 42(3), 272–279.

    Article  CAS  Google Scholar 

  • Witt, G. (2002). Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Marine Chemistry, 79(2), 49–66. https://doi.org/10.1016/s0304-4203(02)00035-x.

  • Yin, Y., Wang, X., Yang, L., Sun, Y., Guo, H., 2010. Bioaccumulation and ROS generation in Coontail Ceratophyllum demersum L. exposed to phenanthrene. Ecotoxicology 19, 1102–1110.

  • Zawadzki, Z., & Langowska, I. (1982). Studies on the utilization of octane by algae. Acta Microbiologica Polonica, 32(2), 191–196.

    Google Scholar 

Download references

Acknowledgments

Thanks specially to Marlon Serrano for his administrative support. The authors are very grateful to all people who contributed during the experimental period. We also want to thank specially the colleagues from the BioTox group for their constant support.

Funding

This study was funded by the Cooperation Agreement No. 2, Collaboration Framework Agreement No. 5211567 between the Universidad de los Llanos and ECOPETROL-ICP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohana M. Velasco-Santamaría.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón-Delgado, I.C., Mora-Solarte, D.A. & Velasco-Santamaría, Y.M. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environ Monit Assess 191, 399 (2019). https://doi.org/10.1007/s10661-019-7519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7519-8

Keywords

Navigation