Skip to main content
Log in

The environmental quality of sediments of rivers near prospection areas of semiprecious rocks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mineral exploration areas are recognized for negatively affecting site environmental quality. The recent contaminations in the cities of Brumadinho, Mariana, Santo Antônio do Grama (Minas Gerais), and Barcarena (Pará) point to the seriousness of this issue in Brazil. However, studies on the influence of mining tailings from the extraction of semiprecious rocks on the quality of the sediments of water systems are rare. The aim of this study is to evaluate the influence of mining activities (amethyst, quartz, agate, calcite, and gypsum) on the quality of the sediments of Rio de Várzea, southern Brazil, the biggest region of amethyst rock extraction in the world. The concentrations of the chemical species Al2O3, SiO2, P2O5, K2O, CaO, TiO2, Fe2O3, Cr, Mn, Co, Cu, Zn, Zr, Ba, Cd, and Pb were determined by the technique energy-dispersive X-ray emission spectrometry (EDXRF). In the study, moderate contamination of the sediments of the Várzea River was demonstrated by means of background strategies (contamination factor, enrichment factor, and geoaccumulation index). Statistical analysis with the use of ANOVA, Tukey test, and principal component analysis revealed significant differences of concentrations of the chemical species of the sediments at the exit of the mining zone in relation to the other study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayari, J., Agnan, Y., & Charef, A. (2016). Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia. Environmental Monitoring and Assessment, 188, 188–397.

    Article  Google Scholar 

  • Baggio, S. B., Hartmann, L. A., Massonne, H. J., Theye, T., & Antunes, L. M. (2015). Silica gossan as a prospective guide for amethyst geode deposits in the Ametista do Sulmining district, Paraná volcanic province, southern Brazil. Journal of Geochemical Exploration, 159, 213–226.

    Article  CAS  Google Scholar 

  • Branco, P. M. (2002). Mapa gemológico do estado do Rio Grande do Sul. Porto Alegre: CRPM - Serviço Geológico do Brasil (In Portuguese).

    Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (1995) Canadian sediment quality guidelines for the protection of aquatic life (EPC-98E Protocol for the derivation).

  • Enpresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 2013. Sistema Brasileiro de Classificação de Solos, 3° edição, 20 p.

  • Esteves, F. A., & Camargo, A. F. M. (2011). Sedimento Límnicos (pp. 339–354). Rio de Janeiro: Editora Interciência.

    Google Scholar 

  • Fan, W., Xu, Z., & Wang, W. (2014). Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete. Environmental Pollution, 191, 50–57.

    Article  CAS  Google Scholar 

  • Filizola, H. F., Gomes, M. A. F., & Souza, & M. D. (2006). Amostragem de solos. In Manual de procedimentos de coleta de amostras em áreas agrícolas para análise da qualidade ambiental: solo, água e sedimentos (pp. 25–36). Jaguariúna: EMBRAPA Meio Ambiente.

  • Folha Do Noroeste. 2019. Ametista do Sul apresenta crescimento de exportação de pedras. Accessed on January 18, 2019. Available in < https://www.folhadonoroeste.com.br/noticias/ametista-do-sulapresenta-crescimento-de-exportacao-de-pedras/>

  • Fundação Estadual de Proteção Ambiental (FEPAM). Bacia hidrográfica do rio da Várzea. Disponível em: < http://www.fepam.rs.gov.br/>. (February 20, 2018, in Portuguese).

  • Gadens-Marcon, G.T., Mendonça-Filho, J.G., Guerra-Sommer, M., Carvalho, M.A., Pires, E.F., & Hartmann, L.A. 2014. Relation between the sedimentary organic record and the climatic oscilations in the Holocene attested by palynofacies and organic geochemical analyses from a pond of altitude in southern Brazil. Annals of the Brazilian Academy of Sciences, 86(3), 1077–1099.

  • Graphpad Software. Quick Calcs outlier calculator. Disponível em: <http://graphpad.com/quickcalcs/Grubbs1.cfm>. (january 8, 2018).

  • Hammer, ø (2015). Software paleontological statistics (Past), Version 3.08. Natural History Museum. University of Oslo, 2015.

  • Hanif, N., Eqani, S. A. M. S., Ali, S. M., Cincinelli, A., Ali, N., Katsoyiannis, I. A., Trannver, Z. I., & Bokhari, H. (2016). Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. Journal of Geochemical Exploration, 165, 62–70.

    Article  CAS  Google Scholar 

  • Hartmann, L. A., Medeiros, J. N. T., Baggio, S. B., & Antunes, L. M. (2015). Controls on prolate and oblate geode geometries in the Veia Alta basalt flow, largest world producer of amethyst, Paraná volcanic province, Brazil. Ore Geology Review, 66, 243–251.

    Article  Google Scholar 

  • Hartmann, L. A., Pertille, J., & Duarte, L. C. (2017). Giant-geode endowment of tumuli in the Veia Alta flow, Ametista do Sul. Journal of South American Earth Sciences, 77, 51–57.

    Article  Google Scholar 

  • Herath, D., Pitawala, A., Gunatilake, J., & Iqbal, M. C. M. (2018). Using multiple methods to assess heavy metal pollution in an urban city. Environmental Monitoring and Assessment, 190(657), 657. https://doi.org/10.1007/s10661-018-7016-5.

    Article  CAS  Google Scholar 

  • Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO). (2018). Orientação sobre Validação de Métodos Analíticos. São Paulo: Coordenação Geral de Acreditação (In Portuguese).

    Google Scholar 

  • Kämpf, N., Streck, E.V. 2010. Solos. Geodiversidade do Estado do Rio Grande do Sul. Porto Alegre: CRPM, p. 51-70.

  • Kontos, K. N., Foteinis, S., Paigniotaki, K., & Papadogiannakis, M. (2016). A robust X-ray fluorescence technique for multielemental analysis of solid samples. Environmental Monitoring and Assessment, 188, 120–130.

    Article  Google Scholar 

  • Lone, A. M., Achyuthan, H., Shah, R. A., & Sangode, S. J. (2018). Environmental magnetism and heavy metal assemblages in lake bottom sediments, Anchar Lake, Srinagar, NW Himalaya, India. International Journal of Environmental Research. DOI, 12, 489–502. https://doi.org/10.1007/s41742-018-0108-9.

    Article  Google Scholar 

  • Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., & Zourahah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon Morocco. Ecological Indicators, 48, 616–626.

    Article  CAS  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochimecal background - can we calculate it? Journal of Environmental Geology, 39(9), 990–1000.

    Article  CAS  Google Scholar 

  • Museu de Solos do Rio Grande do Sul (MSRS). 2019. Solos de Planalto: unidade de Passo fundo. Accessed on January 10, 2019. Available in <http://w3.ufsm.br/msrs/index.php/explore/solos/121-um-passo-fundo>

  • Ontiveros-Cuadras, J. F., Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Pérez-Bernal, L. H., Preda, M., & Páez-Osuma, F. (2018). Mineralogical signatures and sources of recent sediment in a large tropical lake. International Journal of Sediment Research, 33, 183–190.

    Article  Google Scholar 

  • Pagnossin, E. M., & Pires, C. A. F. (2008). Silicose em Garimpeiros de Ametista do Sul, Brasil. Hygeia - Revista Brasileira de Geografia Médica e da Saúde, 4(7), 51–71.

    Google Scholar 

  • Pascaud, G., Boussen, S., Soubrand, M., Joussein, E., Fondaneche, P., Abdeljaouad, S., & Bril, H. 2015. Particulate transport and risck assessment of Cd, Pb and Zn in wadi contaminated by runoff from mining wastes in carbonated semi-arid context. Journal of Geochemical Exploration, Netherlands. 152, 27–36.

  • Pejman, A., Bidhendi, G. N., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new índex for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373.

    Article  CAS  Google Scholar 

  • Periotto, F., & Cielo Filho, R. (2014). A mata ciliar: conceituação, considerações sobre conservação, ecologia e recuperação. In Bacias hidrográficas e recursos hídricos (pp. 73–92). Rio de Janeiro: Editora Interciência.

    Google Scholar 

  • Pinto, M. V., & Hartmann, L. A. (2011). Flow-by-flow chemical stratigraphy and evolution of thirteen Serra Geral group basalt flows from Vista Alegre, southernmost Brazil. Annals of Brazilian Academy of Sciences, 83, 425–440.

    Article  CAS  Google Scholar 

  • Remor, M. B., Sampaio, S. C., Rijk, S., Boas, M. A. V., Gotardo, J. T., Pinto, E. T., & Schardong, F. A. (2018). Sediment geochemistry of the urban Lake Paulo Gorski. International Journal of Sediment Research, 33, 406–414. https://doi.org/10.1016/j.ijsrc.2018.04.009.

    Article  Google Scholar 

  • Rodrigues, A. P. C., Castilhos, Z. C., Cesar, R. G., Almosny, N. R. P., Linde-Arias, A. R., & Bidone, E. D. (2011). Avaliação de risco ecológico: conceitos básicos, metodologia e estudo de caso. Rio de Janeiro: CETEM/MCT (In Portuguese).

    Google Scholar 

  • Rosenstengel, L. M., & Hartmann, L. A. (2012). Geochemical stratigraphy of lavas and fault-block structures in the Ametista do Sul geode mining district, Paraná volcanic province, southern Brazil. Ore Geology Reviews, 48, 332–348.

    Article  Google Scholar 

  • Ryan, J. G., Shervais, J. W., Li, Y., Reagan, M. K., Li, H. Y., Godard, M., Kirchenbaur, M., Whattam, S. A., Pearce, J. A., Chapman, T., Nelson, W., Prytulak, J., Shimizu, K., & Petronotis, K. (2017). Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chemical Geology, 451, 55–66.

    Article  CAS  Google Scholar 

  • Secretária do Ambiente e do Desenvolvimento Sustentável (SEMA) (2012). Relatório anual sobre a situação dos recursos hídricos no Estado do Rio Grande do Sul. Porto Alegre : Governo do Estado do Rio Grande do Sul (In Portuguese).

  • Silva, P. R. B., Makara, C. N., Munaro, A. P., Schnitzler, D. C., Wastowski, A. D., & Poleto, C. (2016). Comparison of the analytical performance of EDXRF and FAAS techhiques in the determination of metal species concentrations using protocol 3050B (USEPA). International Journal River Basin Management, 14, 401–406.

    Article  Google Scholar 

  • Silva, P. R. B., Schnitzler, D., & Poleto, C. (2017a). Avaliação da qualidade dos sedimentos por índices de qualidade ambiental: panorama em periódicos da área. Estudos Ambientais. Volume 1 (pp. 95–112). Rio de Janeiro: Editora Interciência.

    Google Scholar 

  • Silva, P. P., Santos, L. T. S. O., & Jesus, T. B. (2017b). Assessment of heavy metal contamination in sub-tropical riverine sediments using geoaccumulation index. Ecotoxicoloy and Environmental Contamination, Brasil, 12(1), 1–9.

    Article  Google Scholar 

  • Sourceforge. Software de geração gráfica SciDAVis. Disponível em: <http://scidavis.sourceforge.net/>. (January 02, 2018).

  • Sundararajan, S., Khadanga, M. K., Kumar, J. P. P. J., Raghumaran, S., Vijaya, R., & Jena, B. K. (2017). Ecological risk assessment of trace metal accumulation in sediments of Veraval Harbor, Gujarat, Arabian Sea. Marine Pollution Bulletin, 114, 592–601.

    Article  CAS  Google Scholar 

  • Tiwari, M., Sahu, S. K., Brangare, R. C., Ajmal, P. Y., & Pandit, G. G. (2013). Depth profile of major and trace elements in estuarine core sediment using the EDXRF technique. Applied Radiation and Isotopes, 80, 78–83.

    Article  CAS  Google Scholar 

  • Vosoogh, A., Saeedi, M., & Lak, R. (2016). Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea. Environmental Monitoring and Assessment, 188-603

  • Wildner, W., & Lopes, R. C. (2010). Evolução Grológica: do paleoproterozoico ao recente (pp. 15–34). CRPM: Geodiversidade do estado do Rio Grande do Sul. Porto Alegre.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Cristiano Poleto of the Hydraulic Research Institute of UFRGS and the journalist Andreia Primaz Eckhadt of the company O2 Multicomunicações. Thanks also to the Federal University of Santa Maria (UFSM) as well as for the support of the National Council for Scientific and Technological Development (CNPQ) in the financing of research actions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Bairros da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.R.B., Nora, F.E.D., de Castro, R.J. et al. The environmental quality of sediments of rivers near prospection areas of semiprecious rocks. Environ Monit Assess 191, 364 (2019). https://doi.org/10.1007/s10661-019-7456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7456-6

Keywords

Navigation