Skip to main content

Advertisement

Log in

Use of corticolous lichens for the assessment of ambient air quality along rural–urban ecosystems of tropics: a study in Sri Lanka

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring of air quality using lichens as bioindicators on the basis of lichen diversity and frequency is limited along rural–urban ecosystems in tropics. This study attempted to assess and correlate the use of corticolous lichens with atmospheric SO2 and NO2 in such an ecosystem in Sabaragamuwa Province in Sri Lanka. Nine sampling locations, each having three subsampling sites with 162 Mangifera indica and Cocos nucifera trees, were selected for the study. The coverage and frequency of lichens found on selected trees were recorded by 400-cm2 grids and identified using taxonomic keys. SO2 and NO2 levels at each site were determined by “Ogawa” passive air samplers. Data of lichen diversity were used to formulate the index of atmospheric purity (IAP). The environmental parameters related to lichen colonization were measured using standard methods. Data were analyzed using MINITAB 17. The mapping of spatial distribution of lichens and air pollutants were done using inverse distance weighting surface interpolation of geographical information system based on IAP values. A negative correlation was observed between IAP and SO2 and NO2 levels. The presence of the genus Pyxine in almost all urban sites indicated that it could be used as a reliable pollutant tolerant indicator in urban ecosystems. In addition, the index-based mapping techniques could be used successfully to see the effect of atmospheric pollution in urban ecosystems. These results conclude that corticolous lichens have the potential to be used as bioindicators of air quality monitoring along rural–urban ecosystems of tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P.L., Purvis, O.W., Pirintsos, S., Scheidegger, C., Van Haluwyn, C., Wirth, V., et al. (2002). European guideline for mapping lichen diversity as an indicator of environmental stress. London. The British Lichen Society. pp. 273–279. In: Nimis, P.L., Scheidegger, C. & Wolseley, P.A. (eds), Monitoring with Lichens - Monitoring Lichens, Kluwer Academic Publishers, Dordrecht, Boston, London.

  • Attanayaka, A. N. P. M., & Wijeyaratne, S. C. (2013). Corticolous lichen diversity, a potential indicator for monitoring air pollution in tropics. Journal of the National Science Foundation of Sri Lanka, 41, 131–140.

    Article  CAS  Google Scholar 

  • Awasthi, D.D. (1988). A key to the macro lichens of India, Nepal and Sri Lanka, pp. 120. Cramer, India.

  • Awasthi, D.D. (1991). A key to the micro lichens of India, Nepal and Sri Lanka, pp. 80. Cramer, India.

  • Barkman J.J. (1958). Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum & Company, Assen, The Netherlands.

  • Belnap, J., Phillips, S. L., & Troxler, T. (2006). Soil lichen and moss cover and species richness can be highly dynamic: The effects of invasion by the annual exotic grass Bromus fectorum, precipitation, and temperature on biological soil crusts in SE Utah. Applied Soil Ecology, 32, 63–76.

    Article  Google Scholar 

  • Bungartz, F., Lücking, R., & Aptroot, A. (2010). The family Graphidaceae (Ostropales, Lecanoromycetes) in the Galapagos Islands. Nova Hedwigia, 90, 1–44.

    Article  Google Scholar 

  • Colwel, R.K. (2009). Biodiversity: Concepts, patterns, and measurements. The Princeton guide to eclogy, pp.257–263.

  • Conti M.E. (2008). Biological monitoring: Theory & applications. Wit Press, Sothhampton, Boston.

  • Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: Lichens bioindicators of air pollution assessment: A review. Environmental Pollution, 114, 471–492.

    Article  CAS  Google Scholar 

  • Das, P. (2008). Lichen flora of Cachar District (southern Assam) with reference to occurrence, distribution and its role as environmental bioindicators. Ph.D. thesis. In Assam University. India: Silchar.

    Google Scholar 

  • Ferry, B. W., Backley, M. S., Hawkswarth, D. L., et al. (1973). Air pollution and lichens. London: The Athlone Press.

    Google Scholar 

  • Gonzalez-Tezero, M. R., Martinez- Lirola, M. J., Casares- Porcel, M., Molero-Mesa, J., et al. (1995). Three lichens used in popular medicine in eastern Andalucia (Spain). Economic Botany, 49, 96–98.

    Article  Google Scholar 

  • Hawksworth, D. L., & Rose, F. (1970). Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature, 227, 145–148.

    Article  CAS  Google Scholar 

  • Hirano, K., & Maeda, H. (1996). Monitoring methods of NO2, and SO2 in ambient air using a diffusion sampler. Yokohama City Research Institute for Environmental Science, Yokohama, Japan.

  • Krick, R., & Loppi, S. (2002). The IAP approach. In P. L. Nimis, C. Scheidegger, & P. A. Wolseley (Eds.), Monitoring with lichens – monitoring lichens (pp. 21–37). The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • LeBlanc, F., Robitaille, G., & Rao, D. N. N. (1974). Biological response of lichens and bryophytes to environmental pollution in the Murdochville copper mine area, Quebec. Hattori Botanical Laboratory, 38, 405–433.

    CAS  Google Scholar 

  • Matusmoto, M. & Mizoguchi, T. (1995). A simple and simultaneous measurement method of sulphur dioxide in atmosphere using molecular diffusion sampler, International Seminar on the Simple Measuring and Evaluation Method on Air Pollution, Japan Society of Air Pollution (JSAP) and Environmental Research and Training Center (ERTC), Pathumthani, Thailand.

  • Pinho, P., Augusto, S., Branquinho, C., Bio, A., Pereira, M. J., Soares, A., Catarino, F., et al. (2004). Mapping lichen diversity as a first step for air quality assessment. Journal of Atmospheric Chemistry, 49, 377–389.

    Article  CAS  Google Scholar 

  • Richardson, D. H. S. (1988). Understanding the pollution sensitivity of lichens. Botanical Journal of the Linnean Society, 96, 31–43.

    Article  Google Scholar 

  • Saipunkaew, W., Wolseley, P., & Chimonides, P. J. (2005). Epiphytic lichens as indicator of environment health in the vicinity of Chiang Mai city, Thailand. The Lichenologist, 37(4), 345–356. https://doi.org/10.1017/S0024282905014994.

  • Skye, E. (1958). The influence of air pollution on the fruiticolous and foliaceous lichen flora around the shale-oil works at Krarntop in the province of Narke. Svensk Bot. Tidskr. 52: 133–190. 345–356.

  • Smodis, B., & Parr, R. M. (1999). Biomonitoring of air pollution as exemplified by recent IAEA programs. Biological Trace Element Research, 71(1), 257–266.

    Article  Google Scholar 

  • Tonneijk, A. E. G., & Pasthumus, A. C. (1987). Use of indicator plants for biological monitoring of effects of air pollution: The Dutch approach. VDI Berichte, 609, 205–216.

    Google Scholar 

  • Weerakoon, G. (2015) Fascinating lichens of Sri Lanka. Dilmah Conservation, Sri Lanka.

  • Wolseley, P.A. & Aguirre-Hudson, B. (2007). Lichens as indicators of environmental changes in the tropical forests of Thailand. http://www.jstor .org/locate/envpol. Accesed 23 March 2017.

  • Wolseley, P., & Chimonides, J. (2007). Corticolous lichen and moss communities in lowland dipterocarp forests under differing management regimes. Bibliotheca Lichenologica., 95, 583–603.

    Google Scholar 

  • Yalegama, S.S.B. (2004). Impact of emission standards on particulate pollution from diesel vehicles, Proceedings of the First National Symposium on Air Quality Management in Sri Lanka, 2–3 December, Air Resource Management Centre and Ministry of Environment and Natural Resources, Sri Lanka.

Download references

Acknowledgements

The authors acknowledge Dr. Udeni Jayalal of the Department of Natural Resources, Sabaragamuwa University of Sri Lanka, for sharing knowledge to identify lichens and the National Building Research Organization and the Department of Zoology and Environmental Management of the University of Kelaniya in Sri Lanka, for providing field and laboratory facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangala Yatawara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatawara, M., Dayananda, N. Use of corticolous lichens for the assessment of ambient air quality along rural–urban ecosystems of tropics: a study in Sri Lanka. Environ Monit Assess 191, 179 (2019). https://doi.org/10.1007/s10661-019-7334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7334-2

Keywords

Navigation