Skip to main content

Advertisement

Log in

Spatial and temporal distribution of metals in PM2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Mexico City Metropolitan Area (MCMA) was the object of a chemical elemental characterization (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, Ag, Cd, Sb, Pb, La, Sm, Ce, and Eu) of PM2.5 collected during 2013 and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Sampling campaigns were carried out at five locations simultaneously—northwest, northeast, center, southwest, and southeast—during dry-warm season (April), rainy season (August), and dry-cold season (November). By means of enrichment factor (EF) and principal component analysis (PCA), it was possible to attribute the analyzed elements to geogenic and anthropogenic sources, as well as to identify a group of elements with mixed provenance sources. The highest concentrations for most metals were found in northwest and northeast, and during dry-warm (DW), confirming the trend observed in PM2.5 samples collected in 2011. Despite similarities between 2011 and 2013, an increase of 17% in PM2.5 mass concentration was observed, mainly attributable to geogenic sources, whereby the importance of wind intensity to the impact of emission sources is highlighted. The effect of wind intensity was revealed, by means of polar plots, as the controlling mechanism for this increase. This allowed us to conclude that high-speed episodes (5 m s−1) were responsible for raising geogenic metal concentrations rather than wind direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., & Santamaría, J. M. (2011). Chemical characterisation and source apportionment of PM2. 5 and PM10 at rural, urban and traffic sites in Navarra (north of Spain). Atmospheric Research, 102(1), 191–205.

    Article  CAS  Google Scholar 

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J. C. (2010). PM 10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612–625.

    Article  CAS  Google Scholar 

  • Amador-Muñoz, O., Villalobos-Pietrini, R., Miranda, J., & Vera-Avila, L. E. (2011). Organic compounds of PM 2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources. Science of the Total Environment, 409(8), 1453–1465.

    Article  Google Scholar 

  • Amador-Muñoz, O., Bazán-Torija, S., Villa-Ferreira, S. A., Villalobos-Pietrini, R., Bravo-Cabrera, J. L., Munive-Colín, Z., Hernández-Mena, L., Saldarriaga-Noreña, H., & Murillo-Tovar, M. A. (2013). Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10, health risk and sources in Southwest Mexico City. Atmospheric Research., 122, 199–212.

    Article  Google Scholar 

  • Barrera, V. A., Miranda, J., Espinosa, A. A., Meinguer, J., Martínez, J. N., Cerón, E., et al. (2012). Contribution of soil, sulfate, and biomass burning sources to the elemental composition of PM10 from Mexico city. International Journal of Environmental Research, 6(3), 597–612.

    CAS  Google Scholar 

  • Cheng, Y., Lee, S. C., Ho, K. F., Chow, J. C., Watson, J. G., Louie, P. K. K., Cao, J. J., & Hai, X. (2010). Chemically-speciated on-road PM2. 5 motor vehicle emission factors in Hong Kong. Science of the Total Environment, 408(7), 1621–1627.

    Article  CAS  Google Scholar 

  • DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D., Weinheimer, A. J., Montzka, D. D., Campos, T., & Jimenez, J. L. (2008). Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 8(14), 4027–4048.

    Article  CAS  Google Scholar 

  • De Foy, B., Caetano, E., Magana, V., Zitácuaro, A., Cárdenas, B., Retama, A., et al. (2005). Mexico City basin wind circulation during the MCMA-2003 field campaign. Atmospheric Chemistry and Physics Discussions, 5(3), 2503–2558.

    Article  Google Scholar 

  • Dongarrà, G., Manno, E., Varrica, D., Lombardo, M., & Vultaggio, M. (2010). Study on ambient concentrations of PM 10, PM 10–2.5, PM 2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmospheric Environment, 44(39), 5244–5257.

    Article  Google Scholar 

  • Hays, M. D., Cho, S. H., Baldauf, R., Schauer, J. J., & Shafer, M. (2011). Particle size distributions of metal and non-metal elements in an urban near-highway environment. Atmospheric Environment, 45(4), 925–934.

    Article  CAS  Google Scholar 

  • Hernández-López, A. E., Miranda, J., & Pineda, J. C. (2016). X-ray fluorescence analysis of fine atmospheric aerosols from a site in Mexico City. Journal of Nuclear. Physics, Material Sciences, Radiation and Applications., 4(1), 25–30.

    Article  Google Scholar 

  • Johnson, K. S., Foy, B. D., Zuberi, B., Molina, L. T., Molina, M. J., Xie, Y., et al. (2006). Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis. Atmospheric Chemistry and Physics, 6(12), 4591–4600.

    Article  CAS  Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367.

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2. 5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407(24), 6196–6204.

    Article  CAS  Google Scholar 

  • Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., & Courcot, D. (2017). Contributions of local and regional anthropogenic sources of metals in PM2.5 at an urban site in northern France. Chemosphere, 181, 713–724.

    Article  CAS  Google Scholar 

  • Michael, S., Montag, M., & Dott, W. (2013). Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environmental Pollution, 183, 19–29.

    Article  CAS  Google Scholar 

  • Miranda, J., Barrera, V. A., Espinosa, A. A., Galindo, O. S., & Meinguer, J. (2005). PIXE analysis of atmospheric aerosols in Mexico City. X-Ray Spectrometry, 34(4), 315–319.

    Article  CAS  Google Scholar 

  • Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., & Zavala, M. (2010). An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics, 10, 8697–8760.

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Alastuey, A., Reche, C., Cusack, M., Amato, F., Pandolfi, M., Pey, J., Richard, A., Prévôt, A. S. H., Furger, M., & Gibbons, W. (2011). Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmospheric Chemistry and Physics, 11(17), 9415–9430.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101(3), 218–224.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Amador-Muñoz, O., Martínez-Trejo, L., Hernández-Alvarez, E., Beramendi-Orosco, L., & García-Arreola, M. E. (2014). Platinum in PM2.5 of the metropolitan area of Mexico City. Environmental Geochemical Health, 36, 987–994.

    Article  CAS  Google Scholar 

  • Morton-Bermea, O., Garza-Galindo, R., Hernández-Álvarez, E., Amador-Muñoz, O., Garcia-Arreola, M. E., Ordoñez-Godínez, S. L., Beramendi-Orosco, L., Santos-Medina, G. L., Miranda, J., & Rosas-Pérez, I. (2018). Recognition of the importance of geogenic sources in the content of metals in PM 2.5 collected in the Mexico City Metropolitan Area. Environmental Monitoring and Assessment, 190(2), 83.

    Article  Google Scholar 

  • Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., et al. (2009). PM composition and source reconciliation in Mexico City. Atmospheric Environment, 43(32), 5068–5074.

    Article  CAS  Google Scholar 

  • Pandolfi, M., Gonzalez-Castanedo, Y., Alastuey, A., Jesus, D., Mantilla, E., de la Campa, A. S., et al. (2011). Source apportionment of PM 10 and PM 2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research, 18(2), 260–269.

    Article  CAS  Google Scholar 

  • Perrone, M. G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., Ballabio, D., Bolzacchini, E., & Camatini, M. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environmental Pollution, 176, 215–227.

    Article  CAS  Google Scholar 

  • Querol, X., Pey, J., Minguillón, M. C., Pérez, N., Alastuey, A., Viana, M., Moreno, T., Bernabé, R. M., Blanco, S., Cárdenas, B., Vega, E., Sosa, G., Escalona, S., Ruiz, H., & Artíñano, B. (2008). PM speciation and sources in Mexico during the MILAGRO-2006 campaign. Atmospheric Chemistry and Physics, 8(1), 111–128.

    Article  CAS  Google Scholar 

  • Saliba, N. A., El Jam, F., El Tayar, G., Obeid, W., & Roumie, M. (2010). Origin and variability of particulate matter (PM10 and PM2. 5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research, 97(1–2), 106–114.

    Article  CAS  Google Scholar 

  • Santibáñez-Andrade, M., Quezada-Maldonado, E. M., Osornio-Vargas, Á., Sánchez-Pérez, Y., & García-Cuellar, C. M. (2017). Air pollution and genomic instability: the role of particulate matter in lung carcinogenesis. Environmental Pollution, 229, 412–422.

    Article  Google Scholar 

  • Stone, E. A., Snyder, D. C., Sheesley, R. J., Sullivan, A. P., Weber, R. J., & Schauer, J. J. (2008). Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmospheric Chemistry and Physics, 8(5), 1249–1259.

    Article  CAS  Google Scholar 

  • Uria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivariate probability function for source identification. Environmental Modelling & Software, 59, 1–9.

    Article  Google Scholar 

  • Wang, Q., Kobayashi, K., Lu, S., Nakajima, D., Wang, W., Zhang, W., Sekiguchi, K., & Terasaki, M. (2016). Studies on size distribution and health risk of 37 species of polycyclic aromatic hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban area of Shanghai city, China. Environmental Pollution, 214, 149–160.

    Article  CAS  Google Scholar 

  • Warneck, P., & Williams, J. (2012). The atmospheric Chemist’s companion: numerical data for use in the atmospheric sciences. Springer Science & Business Media.

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • World Health Organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease

  • Yuan, Z., Lau, A. K. H., Zhang, H., Yu, J. Z., Louie, P. K., & Fung, J. C. (2006). Identification and spatiotemporal variations of dominant PM 10 sources over Hong Kong. Atmospheric Environment, 40(10), 1803–1815.

    Article  CAS  Google Scholar 

  • Zhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2. 5 and meteorological factors. Physica A: Statistical Mechanics and its Applications, 438, 114–123.

    Article  Google Scholar 

  • Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., & Zeng, G. (2014). Source identification and potential ecological risk assessment of heavy metals in PM2. 5 from Changsha. Science of the Total Environment, 493, 109–115.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed with the financial support of Project IN103717 from DGAPA (Dirección General de Personal Académico, UNAM). Rodrigo Garza-Galindo gratefully acknowledges a grant from CONACyT (Consejo Nacional de Ciencia y Tecnología).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofelia Morton-Bermea.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garza-Galindo, R., Morton-Bermea, O., Hernández-Álvarez, E. et al. Spatial and temporal distribution of metals in PM2.5 during 2013: assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environ Monit Assess 191, 165 (2019). https://doi.org/10.1007/s10661-019-7251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7251-4

Keywords

Navigation