Skip to main content
Log in

Assessment of the mobility, bioaccessibility, and ecological risk of Pb and Zn on a dirt road located in a former mining area—Ribeira Valley—Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The inadequate transportation of foundry slags during the construction of a mining waste landfill accounted for the presence of slags in the dirt road that connects the working district of Vila Mota to the city of Adrianópolis. The objectives of this work were to assess the lead (Pb) and zinc (Zn) contamination of the dirt. Three samples separated by 2 km were collected along a dirt road (samples: Adrianópolis, Deposit, and Plant). The conducted assays were physico-chemical parameters, pseudototal concentration, three sequential extraction procedures, and bioaccessibility assay. The laboratory data was used as input in the calculation of contamination indices risk assessment code (RAC) and potential ecological risk (Eri). The dirt road presented high concentrations of Pb (mean 1426.5 mg kg−1) and Zn (mean 4964.8 mg kg−1). The BCR SEP (Bureau Community of Reference Sequential Extraction Procedure) method was more adequate in extracting the soluble-exchangeable fraction, and this fraction was correlated with the gastric phase. The bioaccessible fraction is mainly present in the stomach fraction and is transported to the intestinal phase. Using BCR SEP method to calculate the contamination indices, sample Deposit yielded very high risk when calculating RAC and Eri for Pb (72.9% and 639.5, respectively). For Zn, high risk was obtained with RAC and very high risk for Eri (42.5% and 344.2, respectively). The high content of Pb and Zn on the dirt road presents a risk to the population that uses this road, since the soil particles are easily transported, deposited on the dermis, and inhaled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahnstrom, Z. A. S., & Parker, D. R. (2001). Cadmium reactivity in metal-contaminated soils using a coupled stable isotope dilution—sequential extraction procedure. Environmental Science & Technology, 35, 121–126.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2010). Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere, 78, 1393–1402.

    Article  CAS  Google Scholar 

  • Anju, M., & Banerjee, D. K. (2011). Associations of cadmium zinc and lead in soils from a lead and zinc mining area as studied by single and sequential extractions. Environmental Monitoring and Assessment, 176, 67–85.

    Article  CAS  Google Scholar 

  • APHA - American Public Health Association. (2012). Standard methods for the examination of water and wastewater (22th ed.). Washington, D. C: American Public Health Association.

    Google Scholar 

  • Arab, P. B., Araújo, T. P., & Pejon, O. J. (2015). Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science, 114, 133–140. https://doi.org/10.1016/j.clay.2015.05.020.

    Article  CAS  Google Scholar 

  • Batista, A. H., Melo, V. F., Rate, A. W., Uhlmann, A., & Gilkes, R. (2017). More aggressive sequential extraction procedure to access stable forms of Pb and As in clay minerals of soils. Applied Clay Science, 147, 44–53. https://doi.org/10.1016/j.clay.2017.05.020.

    Article  CAS  Google Scholar 

  • Cao, F., Kong, L., Yang, L., & Zhang, W. (2015). Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province China. Environmental Science and Pollution Research, 22, 13496–13505.

    Article  CAS  Google Scholar 

  • Cardoso Fonseca, E., & Ferreira da Silva, E. (1998). Application of selective extraction techniques in metal-bearing phases identification: a South European case study. Journal of Geochemical Exploration, 61, 203–212.

    Article  CAS  Google Scholar 

  • Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Science Society of America Journal, 36, 764–768.

    Article  Google Scholar 

  • Chester, R., & Hughes, M. J. (1967). A chemical technique for the separation of iron-manganese minerals carbonate minerals and adsorbed trace elements from pelagic sediments. Chemical Geology, 2, 249–262.

    Article  CAS  Google Scholar 

  • Chitolina, J. C., Da Silva, F. C., Barbieri, V., & Podsclan, S. B. (2012). Sequential extraction and speciation of heavy metals in the process of composting of waste garbage. Holos Environment, 12, 99–106.

    Article  Google Scholar 

  • Clevenger, T. E. (1990). Use of sequential extraction to evaluate the heavy metals in mining waste. Water Air Soil Pollution, 50, 241–254.

    Article  CAS  Google Scholar 

  • Da Silva, W. R., Da Silva, F. B. V., Araújo, P. R. M., & Do Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522–530. https://doi.org/10.1016/j.ecoenv.2017.06.068.

    Article  CAS  Google Scholar 

  • Darko, G., Dodd, M., Nkansah, E. A., & Aduse-Poku, Y. (2017). Distribution and bioaccessibility of metals in urban soils of Kumasi, Ghana. Environmental Monitoring and Assessment, 186, 260–273.

    Article  Google Scholar 

  • Drahota, P., Grösslová, Z., & Kindlová, H. (2014). Selectivity of an arsenic sequential extraction procedure for evaluation mobility in mine wastes. Analytica Chimica Acta, 839, 34–43. https://doi.org/10.1016/j.aca.2014.06.022.

    Article  CAS  Google Scholar 

  • EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation). (1997). Manual de métodos de análise de solo. Rio de Janeiro: Embrapa.

    Google Scholar 

  • Emmerich, W. E., Lund, L. J., Page, A. L., & Chang, A. C. (1982). Solid phase forms of heavy metals in sewage sludge-treated soils. Journal of Environmental Quality, 11, 178–181.

    Article  CAS  Google Scholar 

  • Ettler, V., Kříbek, B., Majer, V., Knésl, I., & Mihaljevič, M. (2012). Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt Zambia). Journal of Geochemical Exploration, 113, 68–75.

    Article  CAS  Google Scholar 

  • Eusterhues, K., Rumpel, C., & Kögel-Knabner, I. (2005). Stabilization of soil organic matter isolated by oxidative degradation. Organic Geochemistry, 36, 1567–1575.

    Article  CAS  Google Scholar 

  • Franchi, J. G. A. (2004). Utilização de turfa como adsorvente de metais pesados O exemplo da contaminação da Bacia do Rio Ribeira de Iguape por chumbo e metais associados. Thesis, University of São Paulo.

  • Gibson, J., & Farmer, J. G. (1986). Multi-step sequential chemical extraction of heavy metals from urban soils. Environmental Pollution Series B, Chemical and Physical, 11, 117–135.

    Article  CAS  Google Scholar 

  • Guimarães V (2007) Resíduos de mineração e metalurgia: Efeitos poluidores em sedimentos e em espécie biomonitora rio Ribeira de Iguape—SP. Thesis, University of São Paulo.

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control—a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hass, A., & Fine, P. (2010). Sequential selective extraction procedures for the study of heavy metals in soils sediments and waste materials: a critical review. Environmental Science and Technology, 40, 365–399. https://doi.org/10.1080/10643380802377992.

    Article  CAS  Google Scholar 

  • He, Q., Ren, Y., Mohamed, I., Ali, M., & Hassan, W. (2013). Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil. Soil and Water Research, 8, 71–76.

    Article  CAS  Google Scholar 

  • Huang, S. (2014). Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Transactions of Nonferrous Metals Society of China, 24, 3324–3331.

    Article  CAS  Google Scholar 

  • IAC – Instituto de Agronômico de Campinas (Agronomic Institute of Campinas). (1991). Métodos de análise química mineralógica e física de solos do Instituto Agronômico de Campinas. Boletim Técnico 106. Campinas: IAC.

    Google Scholar 

  • Islam, S., Ahmed, K., Al-Mamun, H., & Islam, A. (2017) Sources and ecological risk of heavy metals in soils of different land uses in Bangladesh, https://doi.org/10.1016/S1002-0160(17)60394-1.

  • Ji, Y., Feng, Y., Wu, J., Zhu, T., Bai, Z., & Duan, C. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20, 571–578. https://doi.org/10.1016/S1001-0742(08)62096-3.

    Article  CAS  Google Scholar 

  • Kasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Varesche, M. B. A., Trofino, J. C., & Rodrigues, V. G. S. (2016). Soil contamination assessment for Pb, Zn and Cd in a slag disposal area using integration of geochemical and microbiological data. Environmental Monitoring and Assessment, 188, 697–720.

    Article  Google Scholar 

  • Krauskopf, K. B. (1972). Introdução a Geoquímica. São Paulo: EDUSP.

    Google Scholar 

  • Lei, P., Zhang, H., Sahn, B., Lv, S., & Tang, W. (2016). Heavy metals in estuarine surface sediments of the Hai River Basin variation characteristics chemical speciation and ecological risk. Environmental Science and Pollution Research, 23, 7869–7879.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706. https://doi.org/10.1016/S0883-2927(01)00065-8.

    Article  CAS  Google Scholar 

  • Liu, E., & Shen, J. A. (2014). Comparative study of metal pollution and potential eco-risk in the sediment of Chaohu Laka (China) based on total concentration and chemical speciation. Environmental Science and Pollution Research, 21, 7285–7295.

    Article  CAS  Google Scholar 

  • Liu, G., Wang, J., Zhang, E., Hou, J., & Liu, X. (2016). Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environmental Science and Pollution Research, 23, 8709–8720.

    Article  CAS  Google Scholar 

  • Lizárraga-Mendiola, L., González-Sandoval, M. R., Durán-Domínguez, M. C., & Márquez-Herrera, C. (2009). Geochemical behavior of heavy metals in a Zn-Pb-Cu mining area in the state of Mexico (Central Mexico). Environmental Monitoring and Assessment, 155, 355–372.

    Article  Google Scholar 

  • Lopes, G., Costa, E. T. S., Penido, E. S., Sparks, D. L., & Guilherme, L. R. G. (2015). Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environmental Science and Pollution Research, 22, 13442–13452.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechula, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environmental International, 30, 159–165.

    Article  CAS  Google Scholar 

  • Lu, S., Teng, Y., Wang, Y., Wu, J., & Wang, J. (2015). Research on the ecological risk of heavy metals in the soil around a Pb-Zn mine in the Huize County China. Chinese Journal of Geochemistry, 34, 540–549.

    Article  CAS  Google Scholar 

  • Marques, J. P. (2014). Geological and geotechnical characterization of a residual soil from Eldorado Paulista (SP) for use as liner. Undergraduate Monography, University of São Paulo.

  • Othmani, M. A., Souissi, F., Durães, N., Abdelkader, M., & Da Silva, E. F. (2015). Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil. Environmental Monitoring and Assessment, 187, 523–540.

    Article  Google Scholar 

  • Palassard, F., Winiarski, T., & Petit-Ramel, M. (1999). Retention and distribution of three heavy metals in carbonated soil: comparison between batch and unsaturated column studies. Journal of Contaminant Hydrology, 42, 99–111.

    Article  Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477–493.

    Article  Google Scholar 

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanetta, M. L., & Oro, A. (1985). A heavy metal speciation in the sediments of northern Adriatic sea—a new approach for environmental toxicity determination. In International Conference Heavy Metals in the Environment (Vol. 2, pp. 454–456).

    Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of toposoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Qasim, B., & Motelica-Heino, M. (2014). Potentially toxic element fractionation in technosoils using two sequential extraction schemes. Environmental Science and Pollution Research, 21, 5054–5065.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Rodrigues, V. G. S. (2018). Disposal of mining wastes and contamination by potentially toxic metals. Thesis. University of São Paulo.

  • Romaguera, F., Boluda, R., Fornes, F., & Abad, M. (2008). Comparison of three sequential extraction procedures for trace element partitioning in three contaminated Mediterranean soils. Environmental Geochemistry and Health, 30, 171–175.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., & Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • SESA - Secretaria de Estado da Saúde do Paraná (State Secretary of Health of Paraná). (2008). Avaliação de risco à saúde humana por exposição aos resíduos da PLUMBUM no município de Adrianópolis – PR Paraná. Ministério da Saúde e Secretária do Estado de Curitiba (Ministry of Health and Secretary of State of Curitiba).

  • Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Sun, X., Awasthi, M. K., Wang, Q., & Zhang, Z. (2017). Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County China. Ecotoxicology and Environmental Safety, 139, 254–262. https://doi.org/10.1016/j.ecoenv.2017.01.044.

    Article  CAS  Google Scholar 

  • Silveira, M. L., Alleoni, L. R. F., O’Connor, G. A., & Chang, A. C. (2006). Heavy metal extraction methods—a modification for tropical soils. Chemosphere, 64, 1929–1938. https://doi.org/10.1016/j.chemosphere.2006.01.018.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (1999). Distribution of organic carbon in bed sediments of Manoa stream Oahu Hawaii. Earth Surface Processes and Landforms, 24, 571–583.

    Article  CAS  Google Scholar 

  • Tang, Z., Zhang, L., Huang, Q., Yang, Y., Nie, Z., Cheng, J., Yang, J., Wang, Y., & Chai, M. (2015). Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicology and Environmental Safety, 122, 343–351. https://doi.org/10.1016/j.ecoenv.2015.08.006.

    Article  CAS  Google Scholar 

  • Tang, Q., Li, L., Zhang, S., Zheng, L., & Miao, C. (2018). Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. Journal of Geochemical Exploration, 186, 1–11. https://doi.org/10.1016/j.gexplo.2017.11.018.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Torres, E., & Auleda, M. A. (2013). A sequential extraction procedure for sediments affected by acid mine drainage. Journal of Geochemical Exploration, 128, 35–41. https://doi.org/10.1016/j.gexplo.2013.01.012.

    Article  CAS  Google Scholar 

  • Tuta, B. J. W., & Tels, M. (1990). Extraction kinetics of six heavy metals from contaminated clay soils. Journal Environmental Technology, 11, 541–554. https://doi.org/10.1080/09593339009384895.

    Article  Google Scholar 

  • Usero, J., Gamero, M., Morillo, J., & Gracia, I. (1998). Comparative study of three sequential extraction procedures for metals in marine sediments. Environment International, 24, 487–496. https://doi.org/10.1016/S0160-4120(98)00028-2.

    Article  CAS  Google Scholar 

  • US EPA – United States Environmental Protection Agency. (2007). Estimation of relative bioavailability of lead in soil and soil-like materials Using in vivo and in vitro Methods. OSWER 9285.7–77. Washington DC: US EPA.

  • US EPA – United States Environmental Protection Agency. (2017). Method 1340—In vitro bioaccessibility assay for lead in soil. Washington DC: US EPA.

    Google Scholar 

  • Wan, X., Dong, H., Feng, L., Lin, Z., & Luo, Q. (2017). Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites. Chemosphere, 178, 402–410. https://doi.org/10.1016/j.chemosphere.2017.03.078.

    Article  CAS  Google Scholar 

  • Wei, Z., Wang, D., Zhou, H., & Qi, Z. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences, 10, 1946–1952. https://doi.org/10.1016/j.proenv.2011.09.305.

    Article  CAS  Google Scholar 

  • Wu, L., Liu, G., Zhou, C., Liu, R., Xi, S., Da, C., & Liu, F. (2018). Spatial distributions fractionation characteristics and ecological risk assessment of trace elements in sediments of Chaohu Lake a large eutrophic freshwater lake in Eastern China. Environmental Science and Pollution Research, 25, 588–600. https://doi.org/10.1007/s11356-017-0462-8.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. INSR Ecology, 2011, 1–20.

    Article  Google Scholar 

  • Xie, X. D., Min, X. B., Chai, L. Y., Tang, C. J., Liang, Y. J., Li, M., Ke, Y., Chen, J., & Wang, Y. (2013). Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process. Environmental Science and Pollution Research, 20, 6050–6058.

    Article  CAS  Google Scholar 

  • Yong, R. N., & Mulligan, C. N. (2004). Natural attenuation of contaminants in soil. Boca Raton: Lewis Publishers.

    Google Scholar 

  • Yong, R. N., Galvez-Cloutier, R., & Phadungchewit, Y. (1993). Selective sequential extraction analysis of heavy metal retention in soil. Canadian Geotechnical Journal, 30, 834–847.

    Article  CAS  Google Scholar 

  • Zhu, H., Yuan, X., Zeng, G., Jiang, M., Liang, J., Zhang, C., Yin, J., Huang, H., Liu, Z., & Jiang, H. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22, 1470–1477. https://doi.org/10.1016/S1003-6326(11)61343-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Council for Scientific and Technological Development (CNPq) for productivity in research fellowship (process number 54134/2016-3), the scholarship provided by the Coordination for the Improvement of Higher Education Personnel (CAPES) and, the financial support provided by the São Paulo Research Foundation (FAPESP) for the project 2014/07180-7.

Funding

This study is financially supported by the São Paulo Research Foundation (FAPESP) for the project 2014/07180-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Guimarães Silvestre Rodrigues.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasemodel, M.C., Papa, T.B.R., Sígolo, J.B. et al. Assessment of the mobility, bioaccessibility, and ecological risk of Pb and Zn on a dirt road located in a former mining area—Ribeira Valley—Brazil. Environ Monit Assess 191, 101 (2019). https://doi.org/10.1007/s10661-019-7238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7238-1

Keywords

Navigation