Skip to main content

Advertisement

Log in

Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The occurrence and bioaccessibility of potentially toxic elements (PTEs) in soils and sediments are investigated by many studies, especially in territories exploited by mining and ore-processing activities, nearby agriculture-driven rural cities. Accordingly, the present study aimed at evaluating the geochemical properties, potential bioavailability, and risks for environment and human health of the most concerning PTEs of study area (Gafsa mining basin, Tunisia) such as Cd, Cr, and Zn in selected soil, sediment, and mining waste samples. The extraction of these solid matrixes by modified EU-BCR sequential extraction revealed that the most easily extractable fractions of each PTE were very low (first 2 steps, < 10%), Cd was mainly associated with the oxidizable phase (likely organic matter), and Cr and Zn were mostly found in residual mineral fraction (likely occluded in non-siliceous mineral phase). The total cumulative concentration of each metal was found to be higher in soil/sediment profiles and ore-processing wastes than in phosphate rocks, indicating a metal enrichment due to mining activities. The aqua regia extraction of representative sediment samples revealed that Cd, Cr, and Zn concentrations were higher than non-polluted sediment standards. In contrast, other elements as Cu, Mn, and Pb essentially arose from natural bedrocks. The Unified BARGE method was applied to assess the risk of ingestion by human beings and wild/domestic animals of contaminated sediment particulate prone to wind erosion and air dispersion in the arid conditions of study area. An higher oral bioaccessibility was found for Cd than Zn and Cr, most concerning in acid gastric phase than in sub-neutral intestinal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamo, P., Agrelli, D., & Zampella, M. (2018). Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMs) in polluted soils. Chapter 9. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry, site characterization, data analysis and case hystories (2nd ed., pp. 153–194). Amsterdam: Elsevier.

    Google Scholar 

  • Adamo, P., Denaix, L., Terribile, F., & Zampella, M. (2003). Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117, 347–366.

    CAS  Google Scholar 

  • Adamo, P., Zampella, M., Gianfreda, L., Renella, G., Rutigliano, F. A., & Terribile, F. (2006). Impact of river overflowing on trace element contamination of volcanic soils in South Italy: Part I. Trace element speciation in relation to soil properties. Environmental Pollution, 144, 308–316.

    CAS  Google Scholar 

  • Alloway, B. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer.

    Google Scholar 

  • Baccour, H, Koubaa, H., & Baclouti, S. (2018). Phosphate sludge from Tunisian phosphate mines: Valorisation as ceramics products. In: Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham.

  • Beji Sassi, A., & Sassi, S. (1999). Le cadmium associé aux dépôts phosphatés en Tunisie méridionale. Journal of African Earth Sciences, 29(3), 501–513.

    Google Scholar 

  • Bosso, S. T., & Enzweiler, J. (2008). Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in brazil. Environmental Geochemistry and Health, 30, 219–229.

    CAS  Google Scholar 

  • Bosso, S. T., Enzweiler, J., & Angelica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 195, 257–273.

    CAS  Google Scholar 

  • Bozkurt, S., Monero, L., & Neretnieks, I. (2000). Long-term processes in waste deposits. Science of the Total Environment, 250, 101–121.

    CAS  Google Scholar 

  • Caboche, J., Denys, S., Feidt, C., Delalain, P., Tack, K., & Rychen, G. (2010). Modelling Pb bioaccessibility in soils contaminated by mining and smelting activities. Journal of Environmental Science and Health, Part A, 45, 1264–1274.

    CAS  Google Scholar 

  • Caporale, A. G., Adamo, P., Capozzi, F., Langella, G., Terribile, F., & Vingiani, S. (2018). Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Science of the Total Environment, 643, 516–526.

    CAS  Google Scholar 

  • Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15–27.

    CAS  Google Scholar 

  • Cave, M., Wragg, J., Klinck, B., Grøn, C., Oomen, A.G., van de Wiele, T., Ollson, I., Koch, K., Reimer, N., Basta, N., Tack, K., & Casteel, S. (2006). Preliminary assessment of a unified bioaccessibility method for potentially harmful elements in soils. Epidemiology, 17, S39.

    Google Scholar 

  • CPG. (2012). Compagnie des Phosphates de Gafsa. Rapport Interne.

  • CRDA. (2019). Commissariat Régional au Développement Agricole-Gafsa-Tunisie. Rapport Interne.

  • DIN 19730. (1997). Bodenbeschaffenheit-Extraktion von Spurenelementen mit Ammoniumnitratlösung. Berlin: Beuth Verlag.

    Google Scholar 

  • Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30(7), 973–980.

    CAS  Google Scholar 

  • El-Hasan, T. (2006). Geochemical dissociation of major and trace elements in bed and suspended sediment phases of the phosphate mines effluent water.Jordan of Environmental Geology, 51, 621–629.

    CAS  Google Scholar 

  • El Zreli, R., Courjault-Radé, P., Rabaoui, L., Castet, S., Michel, S., & Bejaoui, N. (2015). Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes city, Gulf of Gabes, SE Tunisia. Marine Pollution Bulletin, 101(2), 922–929.

    Google Scholar 

  • Galfati, I., & Beji Sassi, A. (2006). Les Rejets fins des laveries du minerai phosphaté dans le bassin de Gafsa-Metlaoui (Tunisie). Revue Méditerranéenne de l’Environnement, 1(1), 30–48.

    Google Scholar 

  • Galfati, I., Bilal, E., Béji Sassi, A., Abdallah, H., & Zaïer, A. (2011). Accumulation of trace metal elements in native plants growing near the phosphate treatment industry, Tunisia. Carpathian Journal of Earth and Environmental Sciences, 6(2), 85–100.

    Google Scholar 

  • Galfati, I., Essaid, B., Abdallah, H., & Bejji Sassi, A. (2014). Geochemistry of solid effluents and phosphate ore washed from Metlaoui-Gafsa Basin. Tunisia Romanian Journal of Mineral Deposits, 87(2), 83–86.

    Google Scholar 

  • GESAMP (Joint Group of Experts on the Scientific Aspect of Marine Pollution). (1977). Impact of oil on the marine environment, reports and studies. No. 6, FAO, United Nations.

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. Trends in Analytical Chemistry, 21, 451–467.

    CAS  Google Scholar 

  • Hakkou, R., Benzaazoua, M., & Bussière, B. (2016). Valorization of phosphate waste rocks and sludge from the Maroccan phosphate mines: Challenges and perspectives. Procedia Engineering, 138, 110–118.

    CAS  Google Scholar 

  • Hamed, Y. (2009). Caractérisation hydrogéologique, hydrochimique et isotopie des systèmes aquifère du synclinal de Moularès Tamerza. Thèse doctorat de 3ème cycle. Université de Sfax (p. 280).

  • Hamed, Y., Ahmadi, R., Laouar, R., Demdoum, A., Gargouri, I., Bouri, S., et al. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin—Southern Tunisia. Journal of African Earth Sciences, 100, 418–436.

    CAS  Google Scholar 

  • Hamed, Y., Dassi, L., Tarki, M., Ahmadi, R., Mehdi, K., & Ben Dhia, H. (2010). Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: A chemical and isotopic approach. Environmental Earth Sciences, 63, 1355–1368.

    Google Scholar 

  • Han, F. X. (2007). Biogeochemistry of trace elements in arid environments. In B. J. Alloy & J. T. Trevors (Eds.), Environmental pollution (Vol. 13, pp. 710–714). Dordrecht: Springer.

    Google Scholar 

  • IAEA (International Atomic Energy Agency). (1990). Guide book on applications of radiotracers in industry. Technical report series no. 316.

  • Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291. https://doi.org/10.1016/j.ecolind.2014.08.016.

    Article  CAS  Google Scholar 

  • ISO 19730. (2008). Soil quality: Extraction of trace elements from soil using ammonium nitrate solution. First edition. ISBN: 978 0 580 54932 8.

  • Khelifi, M., Ben Salah, R., Ouselati, M., Baltas, H., Gschnaller, J., Hamed, H., et al. (2016). Measurements of chemical and radionuclide concentrations in the phosphate deposits around Gafsa in Tunisia. Pelagia Research Library Advances in Applied Science Research, 7, 90–104.

    CAS  Google Scholar 

  • Khelifi, F., Besser, H., Ayadi, Y., Liu, G., Yousaf, B., Harabi, S., et al. (2019). Evaluation of potentially toxic elements’ (PTE) vertical distribution in sediments of Gafsa-Metlaoui mining basin (Southwestern Tunisia) using geochemical and multivariate statistical analysis approaches. Environmental Earth Sciences, 78(2), 53.

    Google Scholar 

  • Khelifi, F., Redhaounia, B., Benassi. R., & Hamed, Y. (2017). Impact of the phosphate industry in the Gafsa mining basin: Environmental threat and health risks. In The 1st international symposium of water resources and environmental impact assessment in North Africa. Oral session. WREIANA 2017, 24–26 March, Gafsa-Tunisia.

  • Krishnamurti, G. S. R., Huang, P. M., Van Rees, K. C. J., Kozzak, L. M., & Rstad, H. P. W. (1995). Speciation of particulate-bound cadmium of soils and its bioavailability. Analyst, 120, 659–665.

    CAS  Google Scholar 

  • Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environment Quality, 26, 20–48.

    Google Scholar 

  • Mehta, N., Cocerva, T., Cipullo, S., Padoan, E., Dino, G. A., Ajmone Marsan, F., et al. (2019). Linking oral bioaccessibility and solid phase distribution of potentially toxic elements in extractive waste and soil from an abandoned mine site: Case study in Campello Monti, NW Italy. Science of the Total Environment, 651, 2799–2810.

    CAS  Google Scholar 

  • Melki, A., Abdollahi, K., Fatahi, R., & Abida, H. (2017). Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia. Journal of African Earth Sciences, 132, 37–46.

    Google Scholar 

  • Mendoza, C. J., Garrido, R. T., Quilodrán, R. C., Segovia, C. M., & Parada, A. J. (2017). Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere, 176, 81–88.

    Google Scholar 

  • Mlayah, A., Ferreira da Silva, E., Rocha, F., Ben Hamza, Ch., Charef, A., & Noronha, F. (2009). The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, north-western Tunisia. Journal of Geochemical Exploration, 102, 27–36.

    CAS  Google Scholar 

  • Mohamed, R., Taieb, D., & Ben Brahim, A. (2015). Evaluation of nitrogen oxides pollution in industrial area, Mdhilla (mining basin of Gafsa, south-western of Tunisia) with aid of GIS. International Journal of Scientific Research & Engineering Technology (IJSET), 2, 24.

    Google Scholar 

  • Mokadem, N., Demdoum, S., Hamed, Y., Bouri, S., Hadji, R., Boyce, A. J., et al. (2016). Hydrogeochemical and stable isotope data of Groundwater of a multi-aquifer system: Northern Gafsa basin—Central Tunisia. Journal of African Earth Sciences, 114, 174–191.

    CAS  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2011). The application of in vitro gastrointestinal extraction to assess oral bioaccessibility of potentially toxic elements from an urban recreational site. Applied Geochemistry, 26, 789–796.

    CAS  Google Scholar 

  • Oomen A. G. (2000). Determinants of oral bioavailability of soilborne contaminants. Ph.D. Dissertation, Universiteit Utrecht.

  • Oomen, A. G., Rompelberg, C. J., Bruil, M. A., Dobbe, C. J., Pereboom, D. P., & Sips, A. J. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44, 281–287.

    CAS  Google Scholar 

  • Ounis, A., & Ben Mammou, A. (2006). Impact environnemental des rejets industriels de l’Usine de transformation de phosphates de M’Dhilla, Sud-Ouest de la Tunisie. Revue Méditerranéenne de l’Environnement, 1(1), 91–105.

    Google Scholar 

  • Pascaud, G., Leveque, T., Soubrand, M., Boussen, S., Joussein, E., & Dumat, C. (2013). Environmental and health risk assessment of Pb, Zn, As and Sb in soccer field soils and sediments from mine tailings: Solid speciation and bioaccessibility. Environmental Sciences and Pollution Research, 21, 4254.

    Google Scholar 

  • Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb, Zn human bioaccessibility in smelter contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477.

    Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR 3-step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    CAS  Google Scholar 

  • Rauret, G., Rubio, R., Lopez-Sanchez, J. R., & Casassas, E. (1989). Specific procedure for metal solid speciation in heavily polluted river sediments. International Journal of Environmental Analytical Chemistry, 35, 89–100.

    CAS  Google Scholar 

  • Renella, G., Adamo, P., Bianco, M. R., Landi, L., Violante, P., & Nannipieri, P. (2004). Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science, 55, 123–133.

    CAS  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in 28 Chemical speciation of heavy metals in the Tigris River sediment soils: Preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailibility, 10(2), 61–75.

    CAS  Google Scholar 

  • Rocco, C., Agrelli, D., Tafuro, M., Caporale, A. G., & Adamo, P. (2018). Assessing the bioavailability of potentially toxic elements in soil: A proposed approach. Italian Journal of Agronomy, 13-1S, 16–22.

    Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrene, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58, 945–954.

    CAS  Google Scholar 

  • Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle (pp. 63–98). Berlin: Springer.

    Google Scholar 

  • SCU (Science Communication Unit). (2013) University of the West of England, Bristol. Science for environment policy. In-depth report: Soil contamination—Impacts on human health. Report produced for the European Commission DG Environment, September 2013. http://ec.europa.eu/science-environment-policy. Retrieved on 06 March 2019.

  • Smida, O. (2012). Etude du comportements des rejets de l’industrie phosphatière de bassin de Gafsa, Metlaoui (Redeyef et M’Dhilla) dans les conditions de surface mémoire de mastère (97 p). déparement de géologie, faculté des sciences de Tunis-ElManar Tunisie.

  • Srarfi, F., Rachdi, R., Bol, R., Gocke, M. I., Brahim, N., & SlimShimi, N. (2019). Stream sediments geochemistry and the influence of flood phosphate mud in mining area, Metlaoui, Western south of Tunisia. Environmental Earth Sciences, 78, 211.

    Google Scholar 

  • Stigliani, W. M. (1996). Buffering capacity: Its relevance in soil and water pollution. New Journal of Chemistry, 20, 205–210.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Google Scholar 

  • Wali, A., Colinet, G., Khadhraoui, M., & Ksibi, M. (2013). Trace metals in surface soil contaminated by release of phosphate industry in the surroundings of Sfax-Tunisia. Environmental Research, Engineering and Management, 3(65), 20–30.

    Google Scholar 

  • Waterlot, C., Douay, F., & Pelfrêne, A. (2017). Chemical availability of Cd, Pb and Zn in anthropogenically polluted soil: Assessing the geochemical reactivity and oral bioaccessibility. Pedosphere, 27(3), 616–629.

    Google Scholar 

  • Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., Denys, S., Gron, C., Oomen, A., Reimer, K., Tack, K., & Van de Wiele, T. (2009). Interlaboratory trial of a unified bioaccessibility procedure. British Geological Survey, OR/07/027.

  • Xia, Q., Peng, C., Lamb, D., Mallavarapu, M., Naidu, R., & Ng, J. C. (2016). Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere, 147, 444–450.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their contribution for improving the manuscript. We acknowledge the financial support of the Ministry of Higher Education and Scientific Research-Tunisia. We deeply thank the members of the Soil Chemistry laboratory of the Department of Agricultural Sciences-University of Naples Federico II. We want to express our gratitude to the members of Environmental Geochemistry and Pollution Research group of CAS-laboratory of Mantle Crust Materials and Environments-University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio G. Caporale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifi, F., Melki, A., Hamed, Y. et al. Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environ Geochem Health 42, 4125–4139 (2020). https://doi.org/10.1007/s10653-019-00434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00434-z

Keywords

Navigation