Skip to main content

Advertisement

Log in

Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land use and land cover (LULC) change have considerable influence on ecosystem services. Assessing change in ecosystem services due to LULC change at different spatial and temporal scales will help to identify suitable management practices for sustaining ecosystem productivity and maintaining the ecological balance. The objective of this study was to investigate variations in ecosystem services in response to LULC change over 27 years in four agro-climatic zones (ACZ) of eastern India using satellite imagery for the year 1989, 1996, 2005, 2011 (Landsat TM) and 2016 (Landsat 8 OLI). The satellite images were classified into six LULC classes, agriculture land, forest, waterbody, wasteland, built-up, and mining area. During the study period (1989 to 2016), forest cover reduced by 5.2%, 13.7%, and 3.6% in Sambalpur, Keonjhar, and Kandhamal districts of Odisha, respectively. In Balasore, agricultural land reduced by 17.2% due to its conversion to built-up land. The value of ecosystem services per unit area followed the order of waterbodies > agricultural land > forests. A different set of indicators, e.g., by explicitly including diversity, could change the rank between these land uses, so the temporal trends within a land use are more important than the absolute values. Total ecosystem services increased by US$ 1296.4 × 105 (50.74%), US$ 1100.7 × 105 (98.52%), US$ 1867 × 105 (61.64%), and US$ 1242.6 × 105 (46.13%) for Sambalpur, Balasore, Kandhamal, and Keonjhar, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bag, K. (2015). Urban development in Western Odisha: a study on Burla town. IOSR J.Of Humanities and Social Science (IOSR-JHSS), 20(5), 97–101.

    Google Scholar 

  • Barman, N. K., Goutam, B., & Amrit, K. (2015). Estimation of fishery sector as a coastal resource zone to explore the associate problems and opportunity at Balasore coastal district, Odisha, India. International journal of Geomatics Geoscience, 6(3), 1696–1707.

    Google Scholar 

  • Bryan, B. A. (2013). Incentives, land use, and ecosystem services: synthesizing complex linkages. Environmental. Science Policy, 27, 124–134.

    Article  Google Scholar 

  • Census of India (2011) Household Schedule-Side A (PDF). Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India. http://www.censusindia.gov.in/2011-common/census_2011.html.

  • Costanza, R., d’Arge, R., de Groot, R., Farberk, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Suttonkk, P., & van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–260.

    Article  CAS  Google Scholar 

  • Costanza, R., Kubiszewski, I., Giovannini, E., Lovins, H., McGlade, J., Pickett, K. E., Ragnarsdottir, K. V., Roberts, D., De Vogli, R., & Wilkinson, R. (2014). Time to leave GDP behind. Nature, 505, 283–285.

    Article  Google Scholar 

  • Dash, L.N. (2007). Economics of mining in Orissa. Orissa review, November-2007, 71–75.

  • de Groot, R., Brander, L., Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L. C., Brink, P., & van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1, 50–61.

    Article  Google Scholar 

  • de Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complex, 7, 260–272.

    Article  Google Scholar 

  • Dhillon, B. S., Kataria, P., & Dhillon, P. K. (2010). National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Current Science, 98, 33–36.

    Google Scholar 

  • Directorate of Agriculture & Food Production (2014–15) Odisha agriculture statistics, 1–133.

  • Directorate of agriculture and food production. Odisha agriculture statistics (2008–09) Government of Odisha, pp 1–102.

  • Directorate of Economics and Statistics. Odisha Economic Survey. (2016–17), Planning and Convergence Department. Government of Odisha, pp 1–345.

  • Directorate of Economics and Statistics: Agricultural Statistics at a Glance. (2016) Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare. Government of India, 1–488.

  • Dubey, A., & Lal, R. (2009). Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. Journal of Crop Improvement, 23(4), 332–350. https://doi.org/10.1080/15427520902969906.

    Article  CAS  Google Scholar 

  • Elvidge, C.D., Sutton, P.C., & Wagner, T.W. et al. (2004). Urbanization. In: G. Gutman, A. Janetos, Justice C., et al., (Eds.), Land change science: observing, monitoring and understanding trajectories of change on the earth’s surface (Vol. 6), Springer Science & Business Media, Kluwer academic publishers, Netherlands, pp 315– 328.

  • Fazal, S. (2000). Urban expansion and loss of agricultural land – a GIS based study of Saharanpur City, India. Environment and Urbanization, 12(2), 133–149.

    Article  Google Scholar 

  • Federation of Indian Chambers of Commerce and Industry (FICCI). (2016). A report on Indian agrochemical industry, 1–45.

  • FSI (2015). Forest and tree resources in states and union territories. Forest survey of India, 108–288.

  • Fu, B., Li, Y., Wang, Y., Zhang, B., Yin, S., Zhu, H., & Xing, Z. (2016). Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecological Indicators, 69, 873–881.

    Article  Google Scholar 

  • Haines-Young, R., Potschin, M., & Kienast, F. (2012). Indicators of ecosystem service potential at European scales: mapping marginal changes and trade-offs. Ecological Indicators, 21, 39–53.

    Article  Google Scholar 

  • Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., & Smith, P. (2009). The carbon footprints of food crop production. Inter. J. Agric. Sustain., 7(2), 107–118.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 1–976.

  • Isbell, F., Peter, B., Reich Tilman, D., Sarah, E., Hobbie Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. PNAS, 110(29), 11911–11916.

    Article  CAS  Google Scholar 

  • Jena, P. (2018). Climate change and its worst effect on coastal Odisha-an overview of its impact in Jagatsinghpur District. IOSR Journal of Humanities and Social Science (IOSR-JHSS), 23(2), 01–15.

    Google Scholar 

  • Kilic, S., Evrendilek, F., Berberoglu, S., & Demirkesen, A. C. (2006). Environmental monitoring of land-use and land-cover changes in a Mediterranean region of Turkey. Environmental Monitoring and Assessment., 114(1–3), 157–168.

    Article  CAS  Google Scholar 

  • Kindu, M., Schneider, T., Teketay, D., & Knoke, T. (2016). Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Science of Total Environment, 547, 137–147.

    Article  CAS  Google Scholar 

  • Kreuter, U. P., Harris, H. G., Matlock, M. D., & Lacey, R. E. (2001). Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics, 39, 333–346.

    Article  Google Scholar 

  • Li, F., Ye, Y. P., Song, B. W., Wang, R. S., & Tao, Y. (2014). Assessing the changes in land use and ecosystem services in Changzhou municipality, Peoples’ Republic of China, 1991–2006. Ecological Indicators, 42, 95–103.

    Article  CAS  Google Scholar 

  • Li, Y., Feng, Y., Guo, X., & Peng, F. (2017). Changes in coastal city ecosystem service values based on land use—A case study of Yingkou, China. Land Use Policy, 65, 287–293.

    Article  Google Scholar 

  • Liu, Y., Li, J., & Zhang, H. (2012). An ecosystem service valuation of land use change in Taiyuan City, China. Ecological Modelling, 225, 127–132.

    Article  Google Scholar 

  • Long, H. L., Liu, Y. Q., Hou, X. G., Li, T. T., & Li, Y. R. (2014). Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat International, 44, 536–544.

    Article  Google Scholar 

  • Meshesha, D. T., Tsunekawa, A., Tsubo, M., Ali, S. A., & Haregeweyn, N. (2014). Land-use change and its socio-environmental impact in eastern Ethiopia's highland. Regional Environmental. Change, 14(2), 757–768.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: a framework for assessment. Washington: Island Press.

    Google Scholar 

  • MSME (Ministry of Small and Medium Enterprises) report (2016–17). Brief Industrial Profile of Balasore District, Government of India. Pp1–19.http://dcmsme.gov.in/dips/2016-17/BIPS%20Balasore%202016-17.pdf. Accessed 28th June 2016. 

  • Mohanty, T. (2016). An economic analysis of adoption and spread of mechanical rice Transplanter in Odisha, Doctoral dissertation.Krishikosh, pp 1–85. http://krishikosh.egranth.ac.in/handle/1/97319

  • National Remote Sensing Centre report Wasteland atlas of India (2011). http://dolr.gov.in/sites/default/files/Wastelands_Atlas_2011.pdf

  • Panigrahy, S., Upadhyay, G., Ray, S. S., & Parihar, J. S. (2010). Mapping of cropping system for the Indo-Gangetic plain using multi-date SPOT NDVI-VGT data. Journal of Indian Society of Remote Sensing., 38(4), 627–632.

    Article  Google Scholar 

  • Patra, H.S., Mishra, B.K., Sahu, B., Dash, P., & Mohapatra, P.P. (2008). Impact of mining in scheduled area of Orissa: a case study from Keonjhar. Environment and Development Team report, Vasundhara, Sahid Nagar, Bhubaneswar, Odisha, India. https://www.vasundharaodisha.org/Research%20Reports/Impact%20of%20Mining%20in%20Schduled%20Area%20of%20Orissa.pdf

  • Patra, H. S., & Sethy, K. M. (2014). Assessment of impact of opencast mine on surrounding forest: a case study from Keonjhar district of Odisha, India. Journal of Environmental Research And Development, 9(1), 249–254.

    Google Scholar 

  • Patra, P. (2015). Trends in farm mechanization in Odisha and its impact on cost of cultivation with special reference to combine harvester and rice transplanter. (Doctoral dissertation), Krishikosh.http://krishikosh.egranth.ac.in/handle/1/97161

  • Punia, M., Joshi, P. K., & Porwal, M. C. (2011). Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data. Expert Systems with Applications, 38, 5577–5583.

    Article  Google Scholar 

  • Raje, D., & Mujumdar, P. P. (2010). Reservoir performance under uncertainty in hydrologic impacts of climate change. Advances Water Resources, 33, 312–326.

    Article  Google Scholar 

  • Ranjan, R., & Upadhyay, V. P. (1999). Ecological problems due to shifting cultivation. Current Science, 77(10), 1246–1250.

    Google Scholar 

  • Satterthwaite, D., McGranahan, G., & Cecilia, T. (2010). Urbanization and its implications for food and farming. Philoshophical Transactions of Royal. Society, 365, 2809–2820.

    Article  Google Scholar 

  • Si, J., Nasiri, F., Han, P., & Li, T. (2014). Variation in ecosystem service values in response to land use changes in Zhifanggou watershed of loess plateau: A comparative study. Environmental Systems Research, 3, 2. https://doi.org/10.1186/2193-2697-3-2.

    Article  Google Scholar 

  • Song, W., Deng, X. Z., Yuan, Y. W., Wang, Z., & Li, Z. H. (2015). Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecological Modelling, 318, 245–253.

    Article  Google Scholar 

  • Su, S. L., Li, D. L., Hu, Y. N., Xiao, R., & Zhang, Y. (2014). Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecological Indicators, 45, 332–339.

    Article  Google Scholar 

  • Xie, G. D., Lu, C. X., Leng, Y. F., Zheng, D., & Li, S. C. (2003). Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 18(2), 189–195.

    Google Scholar 

  • Yan, M., Luo, T., Bian, R., Cheng, K., Pan, G., & Rees, R. (2015). A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China. Environmental Monitoring and Assessment, 187(6), 332, https://doi.org/10.1007/s10661-015-4572-9.

  • Yoshida, A., H. Chanhda, Ye, Yan-Mei. & Liang, Yue-Rong. (2010). Ecosystem service values and land use change in the opium poppy cultivation region in Northern Part of Lao PDR. Acta Ecologica Sinica, 30, 56–61.

  • Zhang, Y., Zhao, L., Liu, J., Liu, Y., & Li, C. (2015). The impact of land cover change on ecosystem service values in urban agglomerations along the coast of the Bohai rim, China. Sustainability, 7, 10365–10387.

    Article  CAS  Google Scholar 

  • Zhao, B., Kreuter, U., Bo, L., Chen, Z. J., & Nobukazu, N. (2004). An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21, 139–148.

    Article  Google Scholar 

  • Zhou, J., Sun, L., Zang, S. Y., Wang, K., Zhao, J. Y., Li, Z. X., Liu, X. M., & Liu, X. R. (2017). Effects of the land use change on ecosystem service value. Global Journal of Environmental Science and Management, 3(2), 121–130.

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial help provided by the Ministry of Earth Sciences, Government of India and also thank Director General, Indian Council of Agricultural Research (ICAR) and Director, ICAR-National Rice Research Institute (NRRI) for giving all the necessary help in executing the work. The help provided by officials of various departments of Odisha in carrying out the survey work is gratefully acknowledged. This study is a part of the project entitled “Delivering food security on limited land (DEVIL; Belmont Forum/FACCE-JPI via NERC: NE/M021327/1)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Nayak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R., Moharana, K.C., Nayak, A.D. et al. Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change. Environ Monit Assess 191, 98 (2019). https://doi.org/10.1007/s10661-019-7224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7224-7

Keywords

Navigation