Skip to main content

Advertisement

Log in

Mapping tidal channel dynamics in the Sundarbans, Bangladesh, between 1974 and 2017, and implications for the sustainability of the Sundarbans mangrove forest

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study presents the spatial and temporal dynamics of tidal channels in the Bangladesh Sundarbans. Parts of the Passur River system were considered for this investigation. Tidal channel bank layers were extracted from aerial photographs from 1974 and 2011 and a Sentinel-2 image from 2017. On-screen digitizing of a tidal channel was undertaken to create the tidal channel layers, and special care was taken during digitization to obtain more accurate results. Layers were overlaid together so that the tidal channel position could be seen for each date. Tidal channel positions were highlighted to infer the erosion/accretion sectors along the channel, and the tidal channel dynamics were calculated. Remote sensing and Geographic Information System (GIS) platforms were used to analyse, interpret and visualize data on accretion and erosion, as well as the locations of the tidal channel bank over different years. The results revealed that erosion was severe in the larger channels, whereas accretion was dominant in the smaller channels. These erosion and accretion processes played an active role in the displacement of tidal channel banks during the period under investigation. Displacement of the tidal channel bank has had a profound impact on the Sundarbans mangrove ecosystem, and continued erosion and accretion processes are of concern for the future sustainability of biodiversity in the Sundarbans. While in the short term, these changes may not have much impact; over decades, the dynamics of tidal channels may significantly contribute to the imbalance of fauna and flora in the Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, A. (1996). Vulnerability of Bangladesh to climate change and sea level rise through tropical cyclones and storm surges. In L. Erda, W. C. Huq, S. Lenhart, S. K. Mukherjee, & J. Wisniewski (Eds.), Climate change vulnerability and adaptation in Asia and the Pacific (pp. 171–179). Netherlands: Springer.

    Chapter  Google Scholar 

  • Allison, M. A. (1998). Historical changes in the Ganges-Brahmaputra delta front. Journal of Coastal Research, 14, 1269–1275.

    Google Scholar 

  • Allison, M., & Kepple, E. (2001). Modern sediment supply to the lower delta plain of the Ganges- Brahmaputra River in Bangladesh. Geo-Marine Letters, 21(2), 66–74.

    Article  CAS  Google Scholar 

  • Allison, M. A., Khan, S., Goodbred, S., & Kuehl, S. (2003). Stratigraphic evolution of the late Holocene Ganges–Brahmaputra lower delta plain. Sedimentary Geology, 155(3), 317–342.

    Article  CAS  Google Scholar 

  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1–13.

    Article  Google Scholar 

  • Auerbach, L., Goodbred Jr., S., Mondal, D., Wilson, C., Ahmed, K., Roy, K., et al. (2015). Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nature Climate Change, 5(2), 153–157.

    Article  Google Scholar 

  • Aziz, A., & Paul, A. R. (2015). Bangladesh Sundarbans: present status of the environment and biota. Diversity, 7(3), 242–269.

    Article  CAS  Google Scholar 

  • Barua, D. K. (1997). The active delta of the Ganges-Brahmaputra rivers: dynamics of its present formations. Marine Geodesy, 20(1), 1–12.

    Article  Google Scholar 

  • Begum, K. (1987). Tension over the Farakka Barrage: a techno-political tangle in South Asia. Dhaka: Dhaka University Press.

    Google Scholar 

  • Bhowmik, A. K., & Cabral, P. (2013). Cyclone Sidr impacts on the Sundarbans floristic diversity. Earth Science Research, 2(2), 62.

    Article  Google Scholar 

  • Blasco, F., Saenger, P., & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27(3), 167–178.

    Article  Google Scholar 

  • Brammer, H. (2014). Bangladesh’s dynamic coastal regions and sea-level rise. Climate Risk Management, 1, 51–62.

    Article  Google Scholar 

  • Chatterjee, N., Mukhopadhyay, R., & Mitra, D. (2015). Decadal changes in shoreline patterns in Sundarbans, India. Journal of Coastal Sciences, 2, 54–64.

    Google Scholar 

  • Chu, Z., Sun, X., Zhai, S., & Xu, K. (2006). Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology, 227(1), 13–30.

    Article  Google Scholar 

  • Danda, A. (2010). Sundarbans: future imperfect climate adaptation report. New Delhi: World Wide Fund for Nature—India Available at http://assets.wwfindia.org/downloads/sundarbans_future_imperfect__climate_adaptation_report.pdf. Accessed 23 Oct 2016.

    Google Scholar 

  • Das, G. K. (2004). Morpho-dynamics of deltaic Sunderbans rivers. Geomorphology and environment (pp. 303–308). Kolkata: Acb Publications.

    Google Scholar 

  • Dasgupta, S., Kamal, F. A., Khan, Z. H., Choudhury, S., & Nishat, A. (2014). River salinity and climate change: evidence from coastal Bangladesh. Policy Research Working Paper, 6817. Washington, D.C: The World Bank.

    Book  Google Scholar 

  • Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K., Mashriqui, H., Reed, D. J., Shabman, L., Simenstad, C. A., Streever, B. J., Twilley, R. R., Watson, C. C., Wells, J. T., & Whigham, D. F. (2007). Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science, 315(5819), 1679–1684.

    Article  CAS  Google Scholar 

  • Ghosh, M. K., Kumar, L., & Roy, C. (2015a). Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137–144.

    Article  Google Scholar 

  • Ghosh, A., Schmidt, S., Fickert, T., & Nüsser, M. (2015b). The Indian Sundarban mangrove forests: history, utilization, conservation strategies and local perception. Diversity, 7(2), 149–169.

    Article  CAS  Google Scholar 

  • Ghosh, M. K., Kumar, L., & Roy, C. (2016). Mapping long-term changes in mangrove species composition and distribution in the Sundarbans. Forests, 7(12), 305.

    Article  Google Scholar 

  • Ghosh, M. K., Kumar, L., & Roy, C. (2017). Climate variability and mangrove cover dynamics at species level in the Sundarbans, Bangladesh. Sustainability, 9(5), 805.

    Article  Google Scholar 

  • Gilman, E., Ellison, J., & Coleman, R. (2007). Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environmental Monitoring and Assessment, 124(1), 105–130.

    Article  Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159.

    Article  Google Scholar 

  • Hassan, S. T., Syed, M. A., & Mamnun, N. (2017). Estimating erosion and accretion in the coast of Ganges-Brahmaputra-Meghna Delta in Bangladesh. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimating+erosion+and+accretion+in+the+coast+of+Ganges-Brahmaputra-Meghna+Delta+in+Bangladesh.+&btnG=. Accessed 10 July 2016.

  • Islam, S., & Gnauck, A. (2009). Threats to the Sundarbans mangrove wetland ecosystems from transboundary water allocation in the Ganges basin: a preliminary problem analysis. International Journal of Ecological Economics and Statistics (IJEES), 13, 64–78.

  • Islam, S. N., & Gnauck, A. (2011). Water salinity investigation in the Sundarbans rivers in Bangladesh. International Journal of Water, 6(1–2), 74–91.

    Article  CAS  Google Scholar 

  • Islam, M. T., Broström, G., Christensen, K., Drivdal, M., Weber, J., Shendryk, I., & Alwmark, C. (2014). Vegetation changes of Sundarbans based on Landsat imagery analysis between 1975 and 2006. Landscape Environment, 8, 1–9.

  • Islam, G. T., Islam, A. S., Shopan, A. A., Rahman, M. M., Lázár, A. N., & Mukhopadhyay, A. (2015). Implications of agricultural land use change to ecosystem services in the Ganges delta. Journal of Environmental Management, 161, 443–452.

    Article  Google Scholar 

  • Kanniah, K. D., Sheikhi, A., Cracknell, A. P., Goh, H. C., Tan, K. P., Ho, C. S., et al. (2015). Satellite images for monitoring mangrove cover changes in a fast growing economic region in southern Peninsular Malaysia. Remote Sensing, 7(11), 14360–14385.

    Article  Google Scholar 

  • Kleinhans, M. G., Schuurman, F., Bakx, W., & Markies, H. (2009). Meandering channel dynamics in highly cohesive sediment on an intertidal mud flat in the Westerschelde estuary, the Netherlands. Geomorphology, 105(3), 261–276.

    Article  Google Scholar 

  • Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: a review. Remote Sensing, 3(5), 878–928.

    Article  Google Scholar 

  • Kumar, L., & Ghosh, M. K. (2012). Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques. Journal of Applied Remote Sensing, 6(1), 063608–063608.

    Article  Google Scholar 

  • Kumar, P. D., Gopinath, G., Murali, R. M., & Muraleedharan, K. (2014). Geospatial analysis of long-term morphological changes in Cochin estuary, SW coast of India. Journal of Coastal Research, 30(6), 1315–1320.

    Article  Google Scholar 

  • Kunii, O., Nakamura, S., Abdur, R., & Wakai, S. (2002). The impact on health and risk factors of the diarrhoea epidemics in the 1998 Bangladesh floods. Public Health, 116(2), 68–74.

    Article  CAS  Google Scholar 

  • Liu, K., Li, X., Shi, X., & Wang, S. (2008). Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands, 28(2), 336–346.

    Article  CAS  Google Scholar 

  • Mahadevia, K., & Vikas, M. (n.d.). Climate change—impact on the Sundarbans. Available online: https://scholar.google.com.au/scholar?q=climate+change-impact+on+the+Sundarbans&btnG=&hl=en&as_sdt=0%2C5 . Accessed 12 Dec 2016.

  • Mikhailov, V., & Dotsenko, M. (2007). Processes of delta formation in the mouth area of the Ganges and Brahmaputra rivers. Water Resources, 34(4), 385–400.

    Article  CAS  Google Scholar 

  • Paul, S. K., & Routray, J. K. (2011). Household response to cyclone and induced surge in coastal Bangladesh: coping strategies and explanatory variables. Natural Hazards, 57(2), 477–499.

    Article  Google Scholar 

  • Pethick, J., & Orford, J. D. (2013). Rapid rise in effective sea-level in southwest Bangladesh: its causes and contemporary rates. Global and Planetary Change, 111, 237–245.

    Article  Google Scholar 

  • Rakotomavo, A., & Fromard, F. (2010). Dynamics of mangrove forests in the Mangoky River delta, Madagascar, under the influence of natural and human factors. Forest Ecology and Management, 259, 1161–1169.

    Article  Google Scholar 

  • Rakshit, D., Sarkar, S. K., Bhattacharya, B. D., Jonathan, M., Biswas, J. K., Mondal, P., et al. (2015). Human-induced ecological changes in western part of Indian Sundarban megadelta: A threat to ecosystem stability. Marine Pollution Bulletin, 99(1), 186–194.

    Article  CAS  Google Scholar 

  • Rogers, K. G., Goodbred, S. L., & Mondal, D. R. (2013). Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges–Brahmaputra delta plain. Estuarine, Coastal and Shelf Science, 131, 297–309.

    Article  Google Scholar 

  • Roy, A. (2010). Vulnerability of the Sundarbans ecosystem. Journal of Coastal Environment, 1(2), 169–181.

    Google Scholar 

  • Siddiqui, J. (2013). Mainstreaming biodiversity accounting: potential implications for a developing economy. Accounting, Auditing & Accountability Journal, 26(5), 779–805.

    Article  Google Scholar 

  • Stanley, D. J., & Warne, A. G. (1998). Nile Delta in its destruction phase. Journal of Coastal Research, 14, 795–825.

    Google Scholar 

  • Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience, 51(10), 807–815.

    Article  Google Scholar 

  • Wadman, H. M. (2008). Controls on continental shelf stratigraphy: Waiapu River, New Zealand. Virginia: The College of William and Mary.

    Google Scholar 

  • Wilson, C. A., & Goodbred Jr., S. L. (2015). Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: linking process, morphology, and stratigraphy. Annual Review of Marine Science, 7, 67–88.

    Article  Google Scholar 

  • Winterwerp, J., & Giardino, A. (2012). Assessment of increasing freshwater input on salinity and sedimentation in the Gorai river system. Report. Netherland: Deltares.

    Google Scholar 

  • Zwoliński, Z. (1992). Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology, 4(6), 367–379.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Survey of Bangladesh (SOB) for the provision of aerial photographs used in this study.

Author information

Authors and Affiliations

Authors

Contributions

M.K.G., L.K. and P.K.L. conceived and designed the experiments; M.K.G. performed the experiments and analysed the data. M.K.G. wrote the paper, with support from L.K and P.K.L.

Corresponding author

Correspondence to Manoj Kumer Ghosh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M.K., Kumar, L. & Langat, P.K. Mapping tidal channel dynamics in the Sundarbans, Bangladesh, between 1974 and 2017, and implications for the sustainability of the Sundarbans mangrove forest. Environ Monit Assess 190, 582 (2018). https://doi.org/10.1007/s10661-018-6944-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6944-4

Keywords

Navigation