Skip to main content
Log in

Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al2O3 and Fe2O3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na2O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akinci, O. T. (2014). Ophiolite-hosted copper and gold deposits of southeastern Turkey: formation and relationship with seafloor hydrothermal processes. Turkish Journal of Earth Sciences, 18(4), 475–509.

    Google Scholar 

  • Alexander, E. B., & DuShey, J. (2011). Topographic and soil differences from peridotite to serpentinite. Geomorphology, 135(3–4), 271–276.

    Article  Google Scholar 

  • Alexander, E. B., Coleman, R. G., Keeler-Wolfe, T., & Harrison, S. P. (2006). Serpentine geoecology of western North America: geology, soils, and vegetation. USA: Oxford University Press 528p.

    Google Scholar 

  • Ashraf, M. A., Sarfraz, M., Naureen, R., & Gharibreza, M. (2015). Environmental impacts of metallic elements: speciation, bioavailability and remediation (434p). Singapore: Springer.

    Book  Google Scholar 

  • ASTM. (1984). Standard test method for distribution ratios by the short-term batch method. Annual book of ASTM standards (pp. 766–773). West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ATSDR. (2002). Draft toxicological profile for several trace elements. Atlanta: U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Baioumy, H., Ulfa, Y., Nawawi, M., Padmanabhan, E., & Anuar, M. N. A. (2016). Mineralogy and geochemistry of Palaeozoic black shales from Peninsular Malaysia: implications for their origin and maturation. International Journal of Coal Geology, 165, 90–105.

    Article  CAS  Google Scholar 

  • Becquer, T., Pétard, J., Duwig, C., Bourdon, E., Moreau, R., & Herbillon, A. J. (2001). Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma, 103(3–4), 291–306.

    Article  CAS  Google Scholar 

  • Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., & Herbillon, A. J. (2006). Sources of trace metals in Ferralsols in New Caledonia. European Journal of Soil Science, 57(2), 200–213.

    Article  CAS  Google Scholar 

  • Boyd, R. S., Baker, A. J. M., Proctor, J. (2004). Ultramafic rocks: their soils, vegetation and fauna. In: Proceedings of the Fourth International Conference on Serpentine Ecology, Cuba, 21–26 April, 2003. Science Reviews.

  • Boyd, R. S., Kruckeberg, A. R., & Rajakaruna, N. (2009). Biology of ultramafic rocks and soils: research goals for the future. Northeastern Naturalist, 16(5), 422–440.

    Article  Google Scholar 

  • Brearley, F. (2005). Nutrient limitation in a Malaysian ultramafic soil. Journal of Tropical Forest Science, 17(4), 596–609.

    Google Scholar 

  • British Standard Institution. (1990a). Methods of test for soils for civil engineering purposes—BS 1377—part 2:9.4. Particle size analysis. London: British Standard Institution.

    Google Scholar 

  • British Standard Institution. (1990b). Methods of test for soils for civil engineering purposes—BS 1377—part 3: 9.0. pH analysis. London: British Standard Institution.

    Google Scholar 

  • Brooks, R.R. (1983). Biological methods of prospecting for minerals. New York: Wiley.

  • Brooks, R. R. (1987). Serpentine and its vegetation: a multidisciplinary approach (288p). Portland: Dioscorides Press.

    Google Scholar 

  • Caillaud, J., Proust, D., Philippe, S., Fontaine, C., & Fialin, M. (2009). Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma, 149(3–4), 199–208.

    Article  CAS  Google Scholar 

  • Cheng, C. H., Jien, S. H., Tsai, H., Chang, Y. H., Chen, Y. C., & Hseu, Z. Y. (2009). Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174(5), 283–291.

    Article  CAS  Google Scholar 

  • Coleman, R. G. (1977). Ore deposits in ophiolites. In R. G. Coleman (Ed.), Ophiolites, ancient oceanic lithosphere? (pp. 124–139). Heidelberg: Springer.

    Google Scholar 

  • Coleman, R. G., Jove, C. (1992). Geological origin of serpentinites. In: Proceedings of the First International Conference on Serpentine Ecology, Davis: Intercept Ltd., University of California.

  • Cornelis, K., & Dutrow, B. (2007). Manual of mineral science. Hoboken: Wiley Interscience 675p.

    Google Scholar 

  • Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.

    CAS  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Biotechnology, 12(4), 335–353.

    Article  CAS  Google Scholar 

  • Echevarria, G. (2018). Chapter 8: Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds). Agromining: farming for metals, mineral resource reviews. Springer International Publishing. In Press. https://doi.org/10.1007/978-3-319-61899-9_8.

  • Echevarria, G., Massoura, S., Sterckeman, T., Becquer, T., Schwartz, C., & Morel, J. L. (2006). Assessment and control of the bioavailability of Ni in soils. Environmental Toxicology and Chemistry, 25, 643–651.

    Article  CAS  Google Scholar 

  • Evans, B. W. (2008). Control of the products of serpentinization by the Fe2+ Mg−1 exchange potential of olivine and orthopyroxene. Journal of Petrology, 49(10), 1873–1887.

    Article  CAS  Google Scholar 

  • Franco-Uría, A., López-Mateo, C., Roca, E., & Fernández-Marcos, M. L. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165(1), 1008–1015.

    Article  CAS  Google Scholar 

  • Frost, B. R., & Frost, C. D. (2013). Essentials of igneous and metamorphic petrology. Cambridge: Cambridge University Press 314p.

    Google Scholar 

  • Ghaderian, S. M., & Baker, A. J. M. (2007). Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. Journal of Geochemical Exploration, 92(1), 34–42.

    Article  CAS  Google Scholar 

  • Gaillardet, J., Viers, J., & Dupré, B. (2003). Trace elements in river waters. Treatise on Geochemistry, 5, 225–272.

    Article  Google Scholar 

  • Galey, M. L., Van Der Ent, A., Iqbal, M. C. M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58(1), 18.

    Article  CAS  Google Scholar 

  • Garnier, J., Quantin, C., Guimarães, E., Garg, V. K., Martins, E. S., & Becquer, T. (2009). Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma, 151(3–4), 204–214.

    Article  CAS  Google Scholar 

  • Georgopoulos, G., Mitsis, I., Argyraki, A., & Stamatakis, M. (2018). Environmental availability of ultramafic rock derived trace elements in the fumarolic-geothermal field of Soussaki area. Greece: Applied Geochemistry In press.

    Google Scholar 

  • Gobbett, D. J., Hutchison, C. S., & Burton, C. K. (1973). Geology of the Malay peninsula: West Malaysia and Singapore. California: Wiley-Interscience 440p.

    Google Scholar 

  • Godard, M., Jousselin, D., & Bodinier, J.-L. (2000). Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letters, 180(1-2), 133–148.

    Article  CAS  Google Scholar 

  • Guilbert, J. M., & Park, C. F. (2007). The geology of ore deposits. Long Grove: Waveland Press 985p.

    Google Scholar 

  • Hing, T. T. (1969). Geology and soils of the Ranau-Luhan area, Sabah, East Malaysia. Kuala Lumpur: Department of Geology, University of Malaya 86p.

    Google Scholar 

  • Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal of Environmental Quality, 22(2), 335–348.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y. (2006). Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Science, 171(4), 341–353.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y., & Iizuka, Y. (2013). Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites. Geoderma, 202, 126–133.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y., Tsai, H., Hsi, H. C., & Chen, Y. C. (2007). Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clays and Clay Minerals, 55(4), 389–401.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y., Zehetner, F., Ottner, F., & Iizuka, Y. (2015). Clay-mineral transformations and heavy-metal release in paddy soils formed on serpentinites in eastern Taiwan. Clays and Clay Minerals, 63(2), 119–131.

    Article  CAS  Google Scholar 

  • Hseu, Z. Y., Watanabe, T., Nakao, A., & Funakawa, S. (2016). Partition of geogenic nickel in paddy soils derived from serpentinites. Paddy and Water Environment, 14(3), 417–426.

    Article  Google Scholar 

  • http://amphibiaweb.org/maps/geo-malaysia.html, Accessed: 20 September 2017.

  • Hutchison, C. S. (2005). Geology of north-west Borneo: Sarawak, Brunei and Sabah. Amsterdam: Elsevier Science 421p.

    Google Scholar 

  • Hutchison, C. S., Tan, D. N. K., & Malaya, U. (2009). Geology of peninsular Malaysia. Kuala Lumpur: University of Malaya 479p.

    Google Scholar 

  • INWQS. (2006). Interim national water quality standards of Malaysia (online) http://www.wepa-db.net/policies/law/malaysia/eq_surface.htm (April 2010).

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jatmika Setiawan. (2009) Evolusi struktur di jalur Tengah Semenanjung Malaysia, dengan penekanan terhadap Negri Kelantan Ph.D thesis, School of Environmental and Natural Resource Sciences, University Kebangsaan Malaysia. 132p.

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer 550p.

    Book  Google Scholar 

  • Kar, D., Sur, P., Mandal, S., Saha, T., & Kole, R. (2008). Assessment of heavy metal pollution in surface water. International journal of Environmental Science and Technology, 5(1), 119–124.

    Article  CAS  Google Scholar 

  • Kierczak, J., Neel, C., Bril, H., & Puziewicz, J. (2007). Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma, 142, 165–177.

    Article  CAS  Google Scholar 

  • Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach. Chemosphere, 73(5), 776–784.

    Article  CAS  Google Scholar 

  • Kumar, A., & Maiti, S. K. (2013). Availability of chromium, nickel and other associated heavy metals of ultramafic and serpentine soil/rock and in plants. International Journal of Emerging Technology and Advanced Engi neering, 3(2), 256–268.

    Google Scholar 

  • Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173(1), 744–749.

    Article  CAS  Google Scholar 

  • Mahfoud, R. F., & Beck, J. N. (1997). Copper mineralizations in the ophiolite of Oman: the genesis and emplacement relationship with the orogenic movements of serpentinised peridotite. International Geology Review, 39(3), 252–286.

    Article  Google Scholar 

  • Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J. L. (2006). Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136(1–2), 28–37.

    Article  CAS  Google Scholar 

  • Mclennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4), 1021.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2, 108–118.

    Google Scholar 

  • O’Hanley, D. S. (1996). Serpentinites: records of tectonic and petrological history. New York: Oxford University Press 277p.

    Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry in serpentinised ultramafic rocks and serpentine soils from the Franciscan complex of California. American Journal of Science, 304(1), 67–101.

    Article  CAS  Google Scholar 

  • Peterson, J. A. (1984). Metallogenetic maps of the ophiolite belts of the western United States. Reston: US Geological Survey.

    Google Scholar 

  • Pirajno, F. (2009). Hydrothermal processes associated with meteorite impacts. Hydrothermal processes and mineral systems (pp. 1097–1130). Amsterdam: Springer Netherlands.

    Book  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.

    Article  Google Scholar 

  • Quantin, C., Ettler, V., Garnier, J., & Šebek, O. (2008). Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geoscience, 340(12), 872–882.

    Article  CAS  Google Scholar 

  • Rahim, S. A., MdTan, M., & Musta, B. (1996). Heavy metals composition of some soils developed from basic and ultrabasic rocks in Malaysia Borneo. Science, 2, 33–46.

    Google Scholar 

  • Raous, S., Becquer, T., Garnier, J., Martins, E. S., Echevarria, G., & Sterckeman, T. (2010). Mobility of metals in nickel mine spoil materials. Applied Geochemistry, 25, 1746–1755.

    Article  CAS  Google Scholar 

  • Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., & Becquer, T. (2013). Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma, 192, 111–119.

    Article  CAS  Google Scholar 

  • Rashmi BN, Prabhakar BC, Gireesh RV, Nijagunaiah R, Ranganath RM (2009) Nickel anomalies in ultramafic profiles of Jayachamarajapura schist belt, Western Dharwar Craton. Current Science, 96, 1512–1517

  • Repin, R. (1998). Preliminary survey of serpentine vegetation areas in Sabah. Sabah Parks Nature Journal, 1, 19–28.

    Google Scholar 

  • Richardson, J. A. (1939). The geology and mineral resources of the neighbourhood of Raub, Pahang with an account of the geology of the Raub Australian Gold Mine. Kuala Lumpur: Geological Survey of Malaysia 166p.

    Google Scholar 

  • Schwertmann, U., & Latham, M. (1986). Properties of iron oxides in some New Caledonian oxisols. Geoderma, 39(2), 105–123.

    Article  CAS  Google Scholar 

  • Shah, M. T., Ara, J., Muhammad, S., Khan, S., & Tariq, S. (2012). Health risk assessment via surface water and sub-surface water consumption in the mafic and ultramafic terrain, Mohmand agency, northern Pakistan. Journal of Geochemical Exploration, 118, 60–67.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.

    Article  CAS  Google Scholar 

  • Skordas, K., & Kelepertsis, A. (2005). Soil contamination by toxic metals in the cultivated region of Agia, Thessaly, Greece. Identification of sources of contamination. Environmental Geology, 48(4), 615–624.

    Article  CAS  Google Scholar 

  • Soil Survey Division Staff. (1993). Soil survey manual. Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • Streit, E., Kelemen, P., & Eiler, J. (2012). Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail ophiolite, Oman. Contributions to Mineralogy and Petrology, 164(5), 821–837.

    Article  CAS  Google Scholar 

  • Tahri, M., Benyaich, F., Bounakhla, M., Bilal, E., Gruffat, J. J., Moutte, J., & Garcia, D. (2005). Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (Central Morocco). Environmental Modeling and Assessment, 102(1–3), 405–417.

    Article  CAS  Google Scholar 

  • Tashakor, M. (2014). Geochemistry of serpentinite and its effect on the environment: case study at Peninsular and Sabah Malaysia. Unpublished PhD Thesis. University Kebangsaan Malaysia (UKM). 234 p.

  • Tashakor, M., Hamzah, M. (2011). An accurate XRF technique for the analysis of geological materials. Proceeding Volume of National Geoscience Conference, hlm. 115. The Puteri Pacific Johor Bahru, Johor, Malaysia. 11–12 June.

  • Tashakor, M., Yaacob, W. Z. W., Mohamad, H., Ghani, A. A., & Saadati, N. (2014). Assessment of selected sequential extraction and the toxicity characteristic leaching test as indices of metal mobility in serpentinite soils. Chemical Speciation & Bioavailability, 26(3), 139–147(9).

    Article  CAS  Google Scholar 

  • Tashakor, M., Hochwimmer, B., & Imanifard, S. (2015). Control of grain-size distribution of serpentinite soils on mineralogy and heavy metal concentration. Asian Journal of Earth Sciences, 8(2), 45.

    Article  CAS  Google Scholar 

  • Tashakor, M., Hochwimmer, B., & Brearley, F. Q. (2017). Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia). Environment and Earth Science, 76, 281.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2), 175–192.

    Article  CAS  Google Scholar 

  • van der Ent, A. (2011). The ecology of ultramafic areas in Sabah: threats and conservation needs. Gardens’ Bulletin Singapore, 63, 385–394.

    Google Scholar 

  • van der Ent, A., Edraki, M. (2018). Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. Environmental Geochemistry and Health, 40(1):189-207.

  • van der Ent, A., Baker, A. J. M., Van Balgooy, M. M. J., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79.

    Article  CAS  Google Scholar 

  • van der Ent, A., Cardace, D., Tibbett, M., & Echevarria, G. (2018). Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 160, 154–169.

    Article  CAS  Google Scholar 

  • Vardaki, C., & Kelepertsis, A. (1999). Environmental impact of heavy metals (Fe, Ni, Cr, Co) in soils waters and plants of triada in euboea from ultrabasic rocks and nickeliferous mineralisation. Environmental Geochemistry and Health, 21(3), 211–226.

    Article  CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186(6), 3415–3429.

    Article  CAS  Google Scholar 

  • Voutsis, N., Kelepertzis, E., Tziritis, E., & Kelepertsis, A. (2015). Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159, 79–92.

    Article  CAS  Google Scholar 

  • Wesolowski, M. F. (2003). Geochemical analysis of the soils and surface water derived from chemical weathering of ultramafic rock, Cornwall, England: trace metal speciation and ecological consequences. B.S. thesis, Department of geology, Middlebury College.74p.

  • WHO. (2006). Guidelines for drinking-water quality. Geneva: Switzerland.

    Google Scholar 

  • Yassin, A., Alabidi, A., Hussain, M., Al-Ansari, N., & Knutsson, S. (2015). Copper ores in Mawat ophiolite complex (part of ZSZ) NE Iraq. Natural Resources, 6(10), 514–526.

    Article  CAS  Google Scholar 

  • Yeap, K. L. (1986). Geology of an area south of Bahau. B.S. thesis, Department of Geology, University of Malaya. 127p.

  • Yuen, H. C. (1996). A study of the distribution and transport of heavy metals in Malaysian rivers and seawater. Kuala Lumpur: Department of Geology. University Malaya 384p.

    Google Scholar 

Download references

Acknowledgements

This study was part of the M. Tashakor’s Ph.D. thesis, and she wishes to thank Universiti Kebangsaan Malaysia (UKM) and the staff from the School of Science and Technology for support. M. Tashakor also acknowledges Universiti Malaysia Sabah (UMS) for organizing the fieldwork for sample collection. A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. We thank anonymous reviewers for contructive comments that improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Tashakor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashakor, M., Modabberi, S., van der Ent, A. et al. Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. Environ Monit Assess 190, 333 (2018). https://doi.org/10.1007/s10661-018-6668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6668-5

Keywords

Navigation