Skip to main content

Advertisement

Log in

Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Considering the heavy metal risk to soil microbiota and agro-ecosystems, the study was designed to determine metal toxicity to bacteria and to find metal tolerant bacteria carrying multifarious plant growth promoting activities and to assess their impact on chickpea cultivated in stressed soils. Metal tolerant strain SFP1 recognized as Pseudomonas aeruginosa employing 16S rRNA gene sequence determination showed maximum tolerance to Cr (400 μg/ml) and Ni (800 μg/ml) and produced variable amounts of indole acetic acid, HCN, NH3, and ACC deaminase and could solubilize insoluble phosphates even under Cr (VI) and Ni stress. Metal tolerant P. aeruginosa reduced toxicity of Cr (VI) and Ni and concomitantly enhanced the performance of chickpea grown under stressed and conventional soils. At 144 mg Cr kg−1, the measured parameters of a bacterial strain was significantly enhanced, but it was lower compared to those recorded at 660 mg Ni kg−1. The strain SFP1 demonstrated maximum increase in seed yield (81%) and grain protein (16%) at 660 mg Ni kg−1 over uninoculated and untreated control. Stressed plants had more proline, antioxidant enzymes, and metal concentrations in plant tissues. P. aeruginosa, however, remarkably declined the level of stress markers (proline and APX, SOD, CAT, and GR), as well as with Cr (VI) and Ni uptake by chickpea. Conclusively, P. aeruginosa strain SFP1 due to its dual metal tolerant ability, capacity to secrete plant growth promoting regulators even under metal stress and potential to mitigate metal toxicity, could be developed as microbial inoculant for enhancing chickpea production in Cr and Ni contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, D. B., & Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils, 12, 39–45.

    Article  CAS  Google Scholar 

  • Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., & Wang, L. (2016). Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air, & Soil Pollution, 227(9), 326.

    Article  Google Scholar 

  • Arnon, D. (1949). Copper enzyme in isolated chloroplast and poly phenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–7.

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health 14(1), 94.

    Article  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ. (1998). Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiologia Plantarum 104, 280–292.

    Article  CAS  Google Scholar 

  • Babu, T. N., Varaprasad, D., Bindu, Y. H., Kumari, M. K., Dakshayani, L., Reddy, M. C., & Chandrasekhar, T. (2014). Impact of heavy metals (Cr, Pb and Sn) on in vitro seed germination and seedling growth of green gram (Vigna radiata (L.) R. Wilczek). Curr Trends Biotechnol Pharm, 8, 160–165.

    CAS  Google Scholar 

  • Bakker, A. W., & Schipper, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biology and Biochemistry, 19, 451–457.

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional Plant Biology 30(1), 57–64.

    Article  CAS  Google Scholar 

  • Banavath, J.N., Konduru, S., Pandit, V., Guduru, K.K., Ramesh, P., Podha, S., AkilaQ, C.S., Puli, R. & Obul, C. (2014). Genotypic Differences in Some Physiological and Biochemical Parameters Symptomatic for Nickel (Ni) Induced Stress in Groundnut (Arachis hypogaea L.). Current Trends in Biotechnology & Pharmacy, 8(3).

  • Banik, A., Mukhopadhaya, S. K., & Dangar, T. K. (2016). Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, 243(3), 799–812.

    Article  CAS  Google Scholar 

  • Bates, L., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I. (1971). Superoxide dismutase improved assays and assay applicable to acrylamide gels. Analytical Biochemistry 44, 276–287.

    Article  CAS  Google Scholar 

  • Bhakta, J.N. (2017) Metal toxicity in microorganism. Handbook of Research on Inventive Bioremediation Techniques 1–23 IGI Global.

  • Bric, J. M., Bostock, R. M., & Silversone, S. E. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

    CAS  Google Scholar 

  • Brigido, C., Glick, B. R., & Oliveira, S. (2016). Survey of plant growth-promoting mechanisms in native portuguese chickpea Mesorhizobium isolates. Microbial Ecology, 1–16.

  • Cakmak I, Horst WJ. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum 83, 463–468.

    Article  CAS  Google Scholar 

  • Carpena RO, Vázquez S, Esteban E, Fernández-Pascual M, De Felipe MR, Zornoza P. (2003). Cadmiumstress in white lupin: effects on nodule structure and functioning. Plant Physiology and Biochemistry 41(10), 911–919.

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK. (2005). Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air & Soil Pollution 167(1), 73–90.

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A. (2008). How plants cope with cadmium: staking all on metabolism and gene expression. Journal of Integrative Plant Biology 50, 1268–1280.

    Article  CAS  Google Scholar 

  • Ditta, A., & Khalid, A. (2016). Bio-organo-phos: a sustainable approach for managing phosphorus deficiency in agricultural soils. In Organic fertilizers-from basic concepts to applied outcomes. InTech.

  • Dixit V, Pandey V, Shyam R (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ. 25, 687–693.

    Article  CAS  Google Scholar 

  • do Amaral, F. P., Pankievicz, V. C. S., Arisi, A. C. M., de Souza, E. M., Pedrosa, F., & Stacey, G. (2016). Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Molecular Biology, 90, 689–697. https://doi.org/10.1007/s11103-016-0449-8.

    Article  Google Scholar 

  • Dye, D. W. (1962). The inadequacy of the usual determinative tests for the identification of Xanthomonas sp. Natural Science, 5, 393–416.

    Google Scholar 

  • Faizan S, Kausar S, Perveen R. (2011). Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biol Med 3(2), 196–206.

    CAS  Google Scholar 

  • FAO/WHO. (1996). Permissible limit of heavy metals in soil and plants. Geneva: WHO.

    Google Scholar 

  • Gangwar S, Singh VP, Prasad SM, Maurya JN (2011). Differential responses of pea seedlings to indole acetic acid under manganese toxicity. Acta Physiologiae Plantarum 33(2), 451–462.

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y. (1995). A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology 61, 793–796.

    CAS  Google Scholar 

  • Gopalakrishnan, S., Vadlamudi, S., Samineni, S., & Kumar, C. S. (2016). Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springer Plus, 5, 1882.

    Article  Google Scholar 

  • Gopalakrishnan, S., Srinivas, V., & Samineni, S. (2017). Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 11, 116–123.

    Article  Google Scholar 

  • Gordon S, Weber RP. (1951). The colorimetric estimation of IAA. Plant Physiol, 26, 192–195.

    Article  CAS  Google Scholar 

  • Gupta, B., & Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. Article ID 701596.

  • Hodges DM, Delong JM, Forney CF, Prange RK. (1999). Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissue containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T. & Williams S.T. (1994). Gram negative aerobic/microaerophilic rods and cocci, in: Bergey’s Manual of Determinative Bacteriology, ninth ed., Williams and Wilkins, Lippincott, Philadelphia, pp. 93–168.

  • Imtiaz, M., Mushtaq, M. A., Rizwan, M. S., Arif, M. S., Yousaf, B., Ashraf, M., Shuanglian, X., Rizwan, M., Mehmood, S., & Tu, S. (2016). Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environmental Science and Pollution Research, 23, 19787–19796.

    Article  CAS  Google Scholar 

  • Israr, D., Mustafa, G., Khan, K. S., Shahzad, M., Ahmad, N., & Masood, S. (2016). Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry, 108, 304–312.

    Article  CAS  Google Scholar 

  • Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh J. (2013). Heavy metals resistance by bacterial strains. Annals of Biological Research 4(2), 60–63.

    Google Scholar 

  • Jackson, M. L. (1976). Soil chemical analysis. New Delhi: Prentice Hall.

    Google Scholar 

  • Karthik, C., & Arulselvi, P. I. (2016). Biotoxic effect of chromium (VI) on plant growth-promoting traits of novel Cellulosimicrobium funkei strain AR8 isolated from Phaseolus vulgaris rhizosphere. Geomicrobiology Journal, 1–9.

  • Kaur, N., & Nayyar, H. (2013). Heavy metal toxicity to food legumes: effects, antioxidative defense and tolerance mechanisms. Food Legumes, 1.

  • Khan MR, Khan MM. (2010). Effect of varying concentration of Nickel and Cobalt on the plant growth and yield of Chickpea. Australian Journal of Basic and Applied Sciences 4(6), 1036–1046.

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters. 7, 1–19.

    Article  Google Scholar 

  • Khudhur NS, Khudhur SM, Ameen NOH. (2016). A Study on soil bacterial population in steel company and some related area in Erbil city in relation to heavy metal pollution. ZANCO Journal of Pure and Applied Sciences 28(5), 101–116.

    Google Scholar 

  • King, J. E. (1932). The colorimetric determination of phosphorus. The Biochemical Journal, 26, 292e297.

    Google Scholar 

  • Kraus TE, Mckersie BD, Fletcher RA. (1995). Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. Journal of Plant Physiology 145, 570–576.

    Article  CAS  Google Scholar 

  • Kumar, S., Kumar, S., Prakash, P., & Singh, M. (2014). Antioxidant defence mechanisms in chickpea (Cicer arietinum L.) under copper and arsenic toxicity. International Journal of Plant Physiology and Biochemistry, 6, 40–43.

    Article  CAS  Google Scholar 

  • Lowery OH, Rosebrough NJ, Farr AJ, Randal RJ. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193, 265e275.

    Google Scholar 

  • Malar, S., Vikram, S. S., Favas, P. J., & Perumal, V. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1), 54.

    Article  Google Scholar 

  • McGrath, S. P., & Cunliffe, C. H. (1985). A simplified method for the extraction of metals Fe, Zn, Cu, Ni, Cd, Pb, Cr and Mn from soil and sewage sludge. Journal of the Science of Food and Agriculture, 36, 794–798.

    Article  CAS  Google Scholar 

  • Misra, N., & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169, 331–339. https://doi.org/10.1016/j.plantsci.2005.02.013.

    Article  CAS  Google Scholar 

  • Mondal, N. K., Das, C., & Datta, J. K. (2015). Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environmental Monitoring and Assessment, 187, 241.

    Article  Google Scholar 

  • Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML. (2014). Phytomanagement of Cdcontaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environmental Scince Pollution Research International 21, 9742.

    Article  CAS  Google Scholar 

  • Mota, R., Pereira, S. B., Meazzini, M., Fernandes, R., Santos, A., Evans, C. A., De Philippis, R., Wright, P. C., & Tamagnini, P. (2015). Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. Journal of Proteomics, 120, 75–94.

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K. (1981). Hydrogen peroxide is scavenged by ascorbato-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22, 867–880.

    CAS  Google Scholar 

  • Naz, H., Naz, A., & Ashraf, S. (2015). Impact of heavy metal toxicity to plant growth and nodulation in chickpea grown under heavy metal stress. International Journal for Research in Emerging Science and Technology, 2, 248–260.

    Google Scholar 

  • Ouzounidou, G. E., Eleftheriou, P., & Karataglis, S. (1992). Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (cruciferae). Canadian J Bot, 70, 947–957.

    Article  CAS  Google Scholar 

  • Ouzounidou, G., Moustakas, M., & Symeonidis, L. (2006). Response of wheat seedlings to Ni stress: effects of supplemental calcium. Archives of Environmental Contamination and Toxicology, 50(3), 346e352.

    Article  Google Scholar 

  • Oves, M., Khan, M. S., Zaidi, A., & Ahmad, E. (2012). Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. In Toxicity of heavy metals to legumes and bioremediation (pp. 1–27). Vienna: Springer.

    Google Scholar 

  • Oves, M., Khan, M. S., & Zaidi, A. (2013). Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. European Journal of Soil Biology, 56, 72–83.

    Article  CAS  Google Scholar 

  • Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Material, 185, 829–836.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5, 65–75.

    Article  Google Scholar 

  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118, 10–15.

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 17, 362–370.

    CAS  Google Scholar 

  • Reeves, M. W., Pine, L., Neilands, J. B., & Balows, A. (1983). Absence of siderophore activity in Legionella species grown in iron-deficient media. Journal of Bacteriology, 154, 324–329.

    CAS  Google Scholar 

  • Sadasivam, S., & Manickam, A. (1992). Biochemical methods. New Delhi: New Age International Publishers Ltd..

    Google Scholar 

  • Sadiq, R., Maqbool, N., & Haseeb, M. (2017). Ameliorative effect of chelating agents on photosynthetic attributes of Cd stressed sunflower. Agricultural Sciences, 8(02), 149.

    Article  Google Scholar 

  • Saleem, M., Asghar, H. N., Ahmad, W., Akram, M. A., Saleem, M. U., Khan, M. Y., Naveed, M., & Zahir, Z. A. (2017). Prospects of bacterial-assisted remediation of metal-contaminated soils. In Agro-Environmental Sustainability (pp. 41–58). Springer International Publishing.

  • Silva-Ortega, C. O., Ochoa-Alfaro, A. E., Reyes-Agüerob, J. A., Aguado-Santacruz, G. A., & Jimenez-Bremont, J. F. (2008). Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiology and Biochemistry, 46, 82–92. https://doi.org/10.1016/j.plaphy.2007.10.011.

    Article  CAS  Google Scholar 

  • Singh, J., Hembram, P., & Basak, J. (2014). Potential of Vigna unguiculata as a phytoremediation plant in the remediation of Zn from contaminated soil. American Journal of Plant Sciences, 5, 1156–1162.

    Article  CAS  Google Scholar 

  • Słaba, M., Bernat, P., Różalska, S., Nykiel, J., & Długoński, J. (2013). Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity. Acta Biochimica Polonica., 60(4), 695–700.

    Google Scholar 

  • Tsukanova, K. A., Сhеbоtаr, V. K., Meyer, J. J., & Bibikova, T. N. (2017). Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South African Journal of Botany., 113, 91–102.

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN. (2000). Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41(7), 1075–1082.

    Article  CAS  Google Scholar 

  • Wani P.A., Khan M.S. and Zaidi A. (2012) In: Zaidi A., Wani P.A., Khan M.S. (eds.) Toxicity of metals to legumes and bioremediation (pp. 45-66). Wien New York: Springer Verlag.

  • Wani PA, Khan MS. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48, 262–3267.

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A. (2007). Cadmium, chromium and copper in greengram plants. Agronomy for sustainable development 27(2), 145–153.

    Article  CAS  Google Scholar 

  • Wood, J. L., Liu, W., Tang, C., & Franks, A. E. (2016). Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils. Health, 7, 8.

    Google Scholar 

  • Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., & Fu, J. (2016). Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers Plant Sci, 7.

  • Yu, X., Li, Y., Zhang, C., Liu, H., Liu, J., & Zheng, W. (2014). Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One, 9(9), e106618.

    Article  Google Scholar 

  • Zolgharnein, H., Karami, K., Assadi, M. M., & Sohrab, A. D. (2010). Investigation of heavy metals biosorption on Pseudomonas aeruginosa strain MCCB 102 isolated from the Persian Gulf. Asian Journal of Biotechnology, 2(2), 99–109.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Maulana Azad National Fellowship granted by University Grants Commission, New Delhi and University Sophisticated Instrument Facility (USIF), Aligarh Muslim University, Aligarh for providing the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Saif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saif, S., Khan, M.S. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environ Monit Assess 190, 290 (2018). https://doi.org/10.1007/s10661-018-6652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6652-0

Keywords

Navigation