Skip to main content

Advertisement

Log in

Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Macrophyte responses to anthropogenic pressures in two rivers of Central Spain were assessed to check if simple metrics can exhibit a greater discriminatory and explanatory power than complex indices at small spatial scales. Field surveys were undertaken during the summer of 2014 (Duraton River) and the spring of 2015 (Tajuña River). Aquatic macrophytes were sampled using a sampling square (45 × 45 cm). In the middle Duraton River, macrophytes responded positively to the presence of a hydropower dam and a small weir, with Myriophyllum spicatum and Potamogeton pectinatus being relatively favored. Index of Macrophytes (IM) was better than Macroscopic Aquatic Vegetation Index (MAVI) and Fluvial Macrophyte Index (FMI) in detecting these responses, showing positive and significant correlations with total coverage, species richness, and species diversity. In the upper Tajuña River, macrophytes responded both negatively and positively to the occurrence of a trout farm effluent and a small weir, with Leptodictyum riparium and Veronica anagallis-aquatica being relatively favored. Although IM, MAVI, and FMI detected both negative and positive responses, correlations of IM with total coverage, species richness, and species diversity were higher. Species evenness was not sensitive enough to detect either positive or negative responses of aquatic macrophytes along the study areas. Overall, traditional and simple metrics (species composition, total coverage, species richness, species diversity) exhibited a greater discriminatory and explanatory power than more recent and complex indices (IM, MAVI, FMI) when assessing responses of aquatic macrophytes to anthropogenic pressures at impacted specific sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abati, S., Minciardi, M. R., Ciadamidaro, S., Fattorini, S., & Ceschin, S. (2016). Response of macrophyte communities to flow regulation in mountain streams. Environmental Monitoring and Assessment, 188, 414–426.

    Article  Google Scholar 

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. Dordrecht: Springer.

    Book  Google Scholar 

  • American Public Health Association (1998). Standard methods for the examination of water and wastewater (the twentieth edition). Washington, DC: APHA-AWWA-WPCF.

  • Baattrup-Pedersen, A., Springe, G., Riis, T., Larsen, S. E., SandJensen, K., & Larsen, L. M. K. (2008). The search for reference conditions for stream vegetation in northern Europe. Freshwater Biology, 53, 1890–1901.

    Article  Google Scholar 

  • Baattrup-Pedersen, A., Larsen, S. E., & Riis, T. (2013). From expert judgment to supervised classification: a new approach to assess ecological status in lowland streams. Science of the Total Environment, 447, 116–122.

    Article  CAS  Google Scholar 

  • Barendregt, A., & Bio, A. M. F. (2003). Relevant variables to predict macrophyte communities in running waters. Ecological Modelling, 160, 205–217.

    Article  Google Scholar 

  • Bartoli, M., Nizzoli, D., Longhi, D., Laini, A., & Viaroli, P. (2007). Impact of a trout farm on the water quality of an Apennine creek from daily budgets of nutrients. Chemistry and Ecology, 23, 1–11.

    Article  CAS  Google Scholar 

  • Benitez-Mora, A., & Camargo, J. A. (2014). Ecological responses of aquatic macrophytes and benthic macroinvertebrates to dams in the Henares River Basin (Central Spain). Hydrobiologia, 728, 167–178.

    Article  CAS  Google Scholar 

  • Bernez, I., Daniel, H., Haury, J., & Ferreira, M. T. (2004). Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Research and Applications, 20, 43–59.

    Article  Google Scholar 

  • Birk, S., & Willby, N. (2010). Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia, 652, 149–163.

    Article  Google Scholar 

  • Boaventura, R., Pedro, A. M., Coimbra, J., & Lencastre, E. (1997). Trout farm effluents: characterization and impact on the receiving streams. Environmental Pollution, 95, 379–387.

    Article  CAS  Google Scholar 

  • Bolpagni, R., Racchetti, E., & Laini, A. (2016). Fragmentation and groundwater supply as major drivers of algal and plant diversity and relative cover dynamics along a highly modified lowland river. Science of the Total Environment, 568, 875–884.

    Article  CAS  Google Scholar 

  • Camargo, J. A. (1992). Temporal and spatial variations in dominance, diversity and biotic índices along a limestone stream receiving a trout farm effluent. Water, Air, and Soil Pollution, 63, 343–359.

    Article  CAS  Google Scholar 

  • Camargo, J. A. (1993). Macrobenthic surveys as a valuable tool for assessing freshwater quality in the Iberian Peninsula. Environmental Monitoring and Assessment, 24, 71–90.

    Article  CAS  Google Scholar 

  • Camargo, J. A. (1995). On measuring species evenness and other associated parameters of community structure. Oikos, 74, 538–542.

    Article  Google Scholar 

  • Casas, C., Brugués, M., Cros, R. M., & Sérgio, C. (2006). Handbook of mosses of the Iberian Peninsula and the Balearic Islands. Barcelona: Institut d’Estudis Catalans.

    Google Scholar 

  • Ceschin, S., Salerno, G., Bisceglie, S., & Kumbaric, A. (2010). Temporal floristic variations as indicator of environmental changes in the Tiber River in Rome. Aquatic Ecology, 44, 93–100.

    Article  Google Scholar 

  • Ceschin, S., Aleffi, M., Bisceglie, S., Savo, V., & Zuccarello, V. (2012). Aquatic bryophytes as ecological indicators of the water quality status in the Tiber river basin (Italy). Ecological Indicators, 14, 74–81.

    Article  CAS  Google Scholar 

  • Ceschin, S., Tombolini, I., Abati, S., & Zuccarello, V. (2015). The effect of river damming on vegetation: it is always unfavourable? A case study from the River Tiber (Italy). Environmental Monitoring and Assessment, 187, 301. https://doi.org/10.1007/s10661-015-4521-7.

    Article  Google Scholar 

  • Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. (2008). Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 595, 9–26.

    Article  Google Scholar 

  • Cirujano, S., & Medina, L. (2002). Plantas acuáticas de las lagunas y humedales de Castilla-La Mancha. Madrid: Real Jardín Botánico (CSIC) y Junta de Comunidades (Castilla La Mancha).

  • Council of the European Communities. (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities, L327, 1–73.

    Google Scholar 

  • Daniel, H., Bernez, I., Haury, J., & Le Coeur, D. (2005). The ability of aquatic macrophytes to assess fish farm pollution in two salmon rivers. Hydrobiologia, 551, 183–191.

    Article  Google Scholar 

  • Daniel, H., Bernez, I., & Haury, J. (2006). Relationships between macrophytic vegetation and physical features of river habitats: the need for a morphological approach. Hydrobiologia, 270, 11–17.

    Google Scholar 

  • Debén, S., Aboal, J. R., Carballeira, A., Cesa, M., Real, C., & Fernández, J. A. (2015). Inland water quality monitoring with native bryophytes: a methodological review. Ecological Indicators, 53, 115–124.

    Article  Google Scholar 

  • Demars, B. O. L. (2013). Uncertainties in biotic indicators and a corrigendum to Ponader et al. (2007): implications for biomonitoring. Ecological Indicators, 27, 44–47.

    Article  Google Scholar 

  • Demars, B. O. L., Potts, J. M., Trémolières, M., Thiébaut, G., Gougelin, N., & Nordmann, V. (2012). River macrophyte indices: not the Holy Grail! Freshwater Biology, 57, 1745–1759.

    Article  Google Scholar 

  • Dibble, E. D., & Thomaz, S. M. (2009). Use of fractal dimension to assess habitat complexity and its influence on dominant invertebrates inhabiting tropical and temperate macrophytes. Journal of Freshwater Ecology, 24, 93–102.

    Article  Google Scholar 

  • Dodkins, I., Aguiar, F., Rivaes, R., Albuquerque, A., RodríguezGonzález, P., & Ferreira, M. T. (2012). Measuring ecological change of aquatic macrophytes in Mediterranean rivers. Limnologica, 42, 95–107.

    Article  CAS  Google Scholar 

  • Fabris, M., Schneider, S., & Melzer, A. (2009). Macrophyte-based bioindication in rivers: a comparative evaluation of the reference index (RI) and the trophic index of macrophytes (TIM). Limnologica, 39, 40–55.

    Article  CAS  Google Scholar 

  • Flor-Arnau, N., Real, M., González, G., Cambra Sánchez, J., Moreno, J. L., Solà, C., & Munné, A. (2015). Índice de Macrófitos Fluviales (IMF), una nueva herramienta para evaluar el estado ecológico de los ríos mediterráneos. Limnetica, 34, 95–114.

    Google Scholar 

  • Franklin, P., Dunbar, M. J., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. Science of the Total Environment, 400, 369–378.

    Article  CAS  Google Scholar 

  • Gecheva, G., & Yurukova, L. (2014). Water pollutant monitoring with aquatic bryophytes: a review. Environmental Chemistry Letters, 12, 49–61.

    Article  CAS  Google Scholar 

  • Gecheva, G., Pall, K., & Hristeva, Y. (2017). Bryophyte communities’ responses to environmental factors in highly seasonal rivers. Botany Letters, 164, 79–91.

    Article  CAS  Google Scholar 

  • Gonzalo, C., & Camargo, J. A. (2013). The impact of an industrial effluent on the water quality, submersed macrophytes and benthic macroinvertebrates in a dammed river of Central Spain. Chemosphere, 93, 117–124.

    Article  Google Scholar 

  • Guilpart, A., Roussel, J. M., Aubin, J., Caquet, T., Marle, M., & LeBris, H. (2012). The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators, 23, 356–365.

    Article  CAS  Google Scholar 

  • Hauer, F. R., & Lamberti, G. A. (Eds.). (1996). Methods in stream ecology. San Diego (CA): Academic Press.

    Google Scholar 

  • Haury, J., Peltre, M. C., Trémolières, M., Barbe, J., Thiébaut, G., & Bernez, I. (2006). A new method to assess water trophy and organic pollution—the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia, 570, 153–158.

    Article  CAS  Google Scholar 

  • Holmes, N.T.H., Newman, J.R., Chadd, S., Rouen, K.J., Saint, L., & Dawson, F.H. (1999). Mean trophic rank: a user’s manual. R&D technical report E38. Bristol (UK): Environment Agency.

  • Janauer, G. A., Schmidt-Mumm, U., & Schmidt, B. (2010). Aquatic macrophytes and water current velocity in the Danube River. Ecological Engineering, 36, 1138–1145.

    Article  Google Scholar 

  • Kohler, A., & Schneider, S. (2003). Macrophytes as bioindicators. Archiv für Hydrobiologie Supplement 147. Large Rivers, 14, 17–31.

    Google Scholar 

  • Kuhar, U., Germ, M., Gaberscik, A., & Urbanic, G. (2011). Development of a River Macrophyte Index (RMI) for assessing river ecological status. Limnologica, 41, 235–243.

    Article  Google Scholar 

  • Lalonde, B. A., Ernst, W., & Garron, C. (2015). Chemical and physical characterisation of effluents from land-based fish farms in Atlantic Canada. Aquaculture International, 23, 535–546.

    Article  CAS  Google Scholar 

  • Meilinger, P., Schneider, S., & Melzer, A. (2005). The reference index method for the macrophyte-based assessment of rivers: a contribution to the implementation of the European water framework directive in Germany. International Review of Hydrobiology, 90, 322–342.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Navarro, C., & De las Heras, J. (2006). Propuesta de un índice de vegetación acuática (IVAM) para la evaluacion del estado trófico de los ríos de Castilla-La Mancha: comparación con otros índices bióticos. Limnetica, 25, 821–838.

    Google Scholar 

  • Pulatsu, S., Rad, F., Koksal, G., Aydm, F., Benli, A. C. K., & Topcu, A. (2004). The impact of rainbow trout effluents on water quality of Kaqrasu stream, Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 4, 9–15.

    Google Scholar 

  • Riis, T., Sand-Jensen, K., & Vestergaard, O. (2000). Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany, 66, 255–272.

    Article  Google Scholar 

  • Ruiz-Zarzuela, I., Halaihel, N., Balcázar, J. L., Ortega, C., Vendrell, D., Pérez, T., Alonso, J. L., & de Blas, I. (2009). Effect of fish farming on the water quality of rivers in northeast Spain. WST, 60, 663–671.

    Article  CAS  Google Scholar 

  • Schaumburg, J., Schranz, C., Foerster, J., Gutowski, A., Hofmann, G., Meilinger, P., Schneider, S., & Schmedtje, U. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica, 34, 283–301.

    Article  Google Scholar 

  • Schneider, S., & Melzer, A. (2003). The trophic index of macrophytes (TIM): a new tool for indicating the trophic state of running waters. International Review of Hydrobiology, 88, 49–67.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practice of statistics in biological research (the third edition). New York: Freeman.

    Google Scholar 

  • Steffen, K., Leuschner, C., Müller, U., Wiegleb, G., & Becker, T. (2014). Relationship between macrophyte vegetation and physical and chemical conditions in northwest German running waters. Aquatic Botany, 113, 46–55.

    Article  CAS  Google Scholar 

  • Suárez, M. L., Mellado, A., Sánchez-Montoya, M. M., & Vidal-Abarca, M. R. (2005). Propuesta de un índice de macrófitos (IM) para evaluar la calidad ecológica de los ríos de la cuenca del Segura. Limnetica, 24, 305–318.

    Google Scholar 

  • Szoszkiewicz, K., Ferreira, T., Korte, T., Baattrup-Pedersen, A., Davy-Bowker, J., & O’Hare, M. (2006). European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia, 566, 211–234.

    Article  CAS  Google Scholar 

  • Szoszkiewicz, K., Jusik, S., Lawniczak, A. E., & Zgoła, T. (2010). Macrophyte development in unimpacted lowland rivers in Poland. Hydrobiologia, 656, 117–131.

    Article  CAS  Google Scholar 

  • Szoszkiewicz, K., Budka, A., Pietruczuk, K., Kayzer, D., & Gebler, D. (2017). Is the macrophyte diversification along the trophic gradient distinct enough for river monitoring? Environmental Monitoring and Assessment, 189, 4. https://doi.org/10.1007/s10661-016-5710-8.

    Article  Google Scholar 

  • Thiebaut, G., Guérold, F., & Muller, S. (2002). Are trophic and diversity indices based on macrophyte communities pertinent tools to monitor water quality. Water Research, 36, 3602–3610.

    Article  CAS  Google Scholar 

  • Tipping, E., Vincent, C. D., Lawlor, A. J., & Lofts, S. (2008). Metal accumulation by stream bryophytes, related to chemical speciation. Environmental Pollution, 156, 936–943.

    Article  CAS  Google Scholar 

  • Tombolini, I., Caneva, G., Cancellieri, L., Abati, S., & Ceschin, S. (2014). Damming effects on upstream riparian and aquatic vegetation: the case study of Nazzano (Tiber River, central Italy). Knowledge and Management of Aquatic Ecosystems, (412), 03. https://doi.org/10.1051/kmae/2013085.

  • Wetzel, R. G. (2001). Limnology: lake and river ecosystems (the third edition). San Diego (CA): Academic Press.

    Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (the third edition). New York: Springer.

    Book  Google Scholar 

  • Wiegleb, G., Bröring, U., Filetti, M., Brux, H., & Herr, W. (2014). Long-term dynamics of macrophyte dominance and growth-form types in two north-west German lowland streams. Freshwater Biology, 59, 1012–1025.

    Article  Google Scholar 

  • Wiegleb, G., Gebler, D., van de Weyer, K., & Birk, S. (2016). Comparative test of ecological assessment methods of lowland streams based on long-term monitoring data of macrophytes. Science of the Total Environment, 541, 1269–1281.

    Article  CAS  Google Scholar 

  • Willby, N. J., Pitt, J. A., & Phillips, G. (2009). The ecological classification of UK rivers using aquatic macrophytes. UK environment agency science reports, project SC010080 /SR1. Bristol: Environment Agency.

    Google Scholar 

Download references

Acknowledgements

The University of Alcala provided logistical support for carrying out field and laboratory studies. Valuable comments and suggestions by two anonymous reviewers are gratefully acknowledged.

Funding

Funds for this research came from the Spanish Ministry of Science and Innovation (Research project CGL2011-28585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Camargo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, J.A. Responses of aquatic macrophytes to anthropogenic pressures: comparison between macrophyte metrics and indices. Environ Monit Assess 190, 173 (2018). https://doi.org/10.1007/s10661-018-6549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6549-y

Keywords

Navigation