Skip to main content
Log in

An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A commercially available handheld spectroradiometer, the WISP-3, was assessed as a tool for monitoring freshwater cyanobacterial blooms for management purposes. Three small eutrophic urban ponds which displayed considerable within-pond and between-pond variability in water quality and cyanobacterial community composition were used as trial sites. On-board algorithms provide field measurements of phycocyanin (CPC) and chlorophyll-a (Chl-a) from surface reflectance spectra measured by the instrument. These were compared with laboratory measurements. Although significant but weak relationships were found between WISP-3 measured CPC and cyanobacterial biovolume measurements and WISP-3 and laboratory Chl-a measurements, there was considerable scatter in the data due likely to error in both WISP-3 and laboratory measurements. The relationships generally differed only slightly between ponds, indicating that different cyanobacterial communities had little effect on the pigment retrievals of the WISP-3. The on-board algorithms need appropriate modification for local conditions, posing a problem if it is to be used extensively across water bodies with differing optical properties. Although suffering a range of other limitations, the WISP-3 has a potential as a rapid screening tool for preliminary risk assessment of cyanobacterial blooms. However, such field assessment would still require adequate support by sampling and laboratory-based analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamo, M., Matta, E., Bresciani, M., De Carols, G., Vacuity, D., Giardino, C., & Pasquarelli, G. (2013). On the synergistic use of SAR and optical imagery to monitor cyanobacteria blooms: The Curonian Lagoon case study. European Journal of Remote Sensing, 46, 789–805. https://doi.org/10.5721/EuJRS20134647.

    Article  Google Scholar 

  • Ahn, C.-Y., Jong, S.-H., Yoon, S.-K., & Oh, H.-M. (2007). Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant. The Journal of Microbiology, 45(2), 98–104.

    CAS  Google Scholar 

  • Al-Tebrineh, J., Merrick, C., Ryan, D., Humpage, A., Bowling, L., & Neilan, B. A. (2012). Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometers of the Murray River. Applied and Environmental Microbiology, 78(1), 263–272. https://doi.org/10.1128/AEM.05587-11.

  • Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E Ltd., Plymouth Marine Laboratory.

    Google Scholar 

  • Baker, P. D. (1991). Identification of common noxious cyanobacteria, part I—Nostocales. Research report no. 29. Melbourne: Urban Water Research Association of Australia.

    Google Scholar 

  • Baker, P. D. (1992). Identification of common noxious cyanobacteria, part II—Chroococcales, Oscillatoriales. Research report no. 46. Melbourne: Urban Water Research Association of Australia.

    Google Scholar 

  • Baker, P. D., & Fabbro, L. D. (1999). A guide to the identification of common blue-green algae (Cyanoprokaryotes) in Australian freshwaters. Identification Guide No. 25. Albury: Cooperative Research Centre for Freshwater Ecology.

  • Bartram, J., Burch, M., Falconer, I. R., Jones, G., & Kuiper-Goodman, T. (1999). Situation assessment, planning and management. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management (pp. 179–209). London: E & FN Spon.

    Google Scholar 

  • Beutler, M., Wiltshire, K. H., Arp, M., Kruse, J., Reineke, C., Moldaenke, C., & Hansen, U.-P. (2003). A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria. Biochimica et Biophysica Acta, 1604(1), 33–46. https://doi.org/10.1016/S0005-2728(03)00022-7.

    Article  CAS  Google Scholar 

  • Bowling, L. C., Merrick, C., Swann, J., Green, D., Smith, G., & Neilan, B. A. (2013). Effects of hydrology and river management on the distribution, abundance and persistence of cyanobacterial blooms in the Murray River, Australia. Harmful Algae, 30, 27–36. https://doi.org/10.1016/j.hal.2013.08.002.

    Article  Google Scholar 

  • Bowling, L. C., Zamyadi, A., & Henderson, R. K. (2016). Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Water Research, 105(1), 22–33. https://doi.org/10.1016/j.watres.2016.08.051.

    Article  CAS  Google Scholar 

  • Bradley, W. G., Borenstein, A. R., Nelson, M., Codd, G. A., Rosen, B. H., Stommel, E. W., & Cox, P. A. (2013). Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative disease? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14(5–6), 325–333. https://doi.org/10.3109/21678421.2012.750364.

    Article  CAS  Google Scholar 

  • Brando, V. E., Dekker, A. G., Park, Y. J., & Schroeder, T. (2012). Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. Applied Optics, 51(15), 2808–2833. https://doi.org/10.1364/AO.51.002808.

    Article  Google Scholar 

  • Bresciani, M., Adamo, A., De Carolis, G., Matta, E., Pasquariello, G., Vaičiūtė, D., & Giardino, C. (2014). Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sensing of Environment, 146, 124–135. https://doi.org/10.1016/j.rse.2013.07.040.

    Article  Google Scholar 

  • Brient, L., Lengronne, M., Bertrand, E., Rolland, D., Sipel, A., Steinmann, D., Baudin, I., Legeas, M., Le Rouzie, B., & Bormans, M. (2008). A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring, 10(2), 248–255. https://doi.org/10.1039/b714238b.

    Article  CAS  Google Scholar 

  • Catherine, A., Escoffier, N., Belhocine, A., Nasri, A. B., Hamlaoui, S., Yéprémian, C., Bernard, C., & Troussellier, M. (2012). On the use of the Fluoroprobe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Research, 46(6), 1771–1784. https://doi.org/10.1016/j.watres.2011.12.056.

    Article  CAS  Google Scholar 

  • Chorus, I. (2012). Introduction. In I. Chorus (Ed.), Current approaches to cyanotoxin risk assessment in different countries, Texte 63, 2012 (pp. 2–15). Dessau-Roẞlau: Federal Environment Agency (Umweltbundesamt).

    Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial. Plymouth: PRIMER-E Ltd., Plymouth Marine Laboratory.

    Google Scholar 

  • Dekker, A. G., & Hestir, E. L. (2012). Evaluating the feasibility of systematic inland water quality monitoring with satellite remote sensing. CSIRO 117441. Melbourne: CSIRO, Water for a Healthy Country National Research Flagship.

  • Duan, H., Ma, R., & Hu, C. (2012). Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of east China. Remote Sensing of Environment, 126, 126–135. https://doi.org/10.1016/j.rse.2012.08.011.

    Article  Google Scholar 

  • Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (Eds.). (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association.

    Google Scholar 

  • Falconer, I. R. (2001). Toxic cyanobacterial bloom problems in Australian waters: Risks and impacts on human health. Phycologia, 40(3), 228–233. https://doi.org/10.2216/i0031-8884-40-3-228.1.

    Article  Google Scholar 

  • Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A., & Morabito, G. (2014). Optical remote sensing of lakes: An overview on Lake Maggiore. Journal of Limnology, 73(s1), 201–214. https://doi.org/10.4081/jlimnol.2014.817.

    Google Scholar 

  • Gons, H. J., Ebert, J., & Kromkamp, J. (1998). Optical teledetection of the vertical attenuation coefficient for downward quantum irradiance of photosynthetically available radiation in turbid inland waters. Aquatic Ecology, 31(3), 299–311. https://doi.org/10.1023/A:1009902627476.

    Article  Google Scholar 

  • Gons, H. J., Rijkeboer, M., & Ruddick, K. G. (2005). Effect of a waveband shift on chlorophyll retrieval from MERIS imagery of inland and coastal waters. Journal of Plankton Research, 27(1), 125–127. https://doi.org/10.1094/plankt/fbh151.

    Article  CAS  Google Scholar 

  • Hansson, M., & Håkansson, B. (2007). The Baltic Algal Watch System—A remote sensing application for monitoring cyanobacterial blooms in the Baltic Sea. Journal of Applied Remote Sensing, 1, 011507. https://doi.org/10.1117/1.2834769.

    Article  Google Scholar 

  • Hawkins, P. R., Holliday, J., Kathuria, A., & Bowling, L. (2005). Change in cyanobacterial biovolume due to preservation by Lugol’s iodine. Harmful Algae, 4(6), 1033–1043. https://doi.org/10.1016/j.hal.2005.03.001.

    Article  CAS  Google Scholar 

  • Hommersom, A., Kratzer, S., Laanen, M., Ansko, I., Ligi, M., Bresciani, M., Giardino, C., Beltrán-Abaunza, J. M., Moore, G., Wernand, M., & Peters, S. (2012). Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS). Journal of Applied Remote Sensing, 6, 063615. https://doi.org/10.1117/1.JRS.6.063615.

    Article  Google Scholar 

  • Hongve, D., & Akesson, G. (1996). Spectrophotometric determination of water colour in Hazen units. Water Research, 30(11), 2771–2775. https://doi.org/10.1016/S0043-1354(96)00163-7.

    Article  CAS  Google Scholar 

  • Horváth, H., Kovács, A. W., Riddick, C., & Présing, M. (2013). Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. European Journal of Phycology, 48(3), 278–286. https://doi.org/10.1080/09670262.2013.821525.

    Article  Google Scholar 

  • Hötzel, G., & Croome, R. (1999). A phytoplankton methods manual for Australian freshwaters. LWRRDC occasional paper 22/99. Canberra: Land and Water Resources Research and Development Corporation.

    Google Scholar 

  • Humpage, A., Gaget, V., Lau, M., Froscio, S., & Laingam, S. (2013). CyanoSurvey: A national update on toxic cyanobacteria and their distribution. Final report project 1022. Adelaide: Water Research Australia.

    Google Scholar 

  • Hunter, P. D., Tyler, A. N., Présing, M., Kovács, A. W., & Preston, T. (2008). Spectral discrimination of phytoplankton colour groups: The effect of suspended particulate matter and sensor spectral resolution. Remote Sensing of Environment, 112(11), 1527–1544. https://doi.org/10.1016/j.rse.2010.06.006.

    Article  Google Scholar 

  • Hunter, P. D., Tyler, A. N., Gilvear, D. J., & Willby, N. J. (2009). Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. Environmental Science and Technology, 43(7), 2627–2633. https://doi.org/10.1021/es802977u.

    Article  CAS  Google Scholar 

  • Hunter, P. D., Tyler, A. N., Carvalho, L., Codd, G. A., & Maberly, S. C. (2010). Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sensing of Environment, 114(4), 2705–2718. https://doi.org/10.1016/j.rse.2007.08.003.

    Article  Google Scholar 

  • Ibelings, B. W., Fournie, J. W., Hilborn, E. D., Codd, G. A., Coveney, M., Dyble, J., Havens, K., Landsberg, J., & Litaker, W. (2008). Ecosystem effects workgroup report. In H. K. Hednell (Ed.), Cyanobacterial harmful algal blooms: State of the science and research needs. Dordrecht: Springer. Advances in Experimental Medicine and Biology, 619, pp. 654–674.

  • Ibelings, B. W., Backer, L. C., Kardinaal, W. E. A., & Chorus, I. (2014). Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 40, 63–74. https://doi.org/10.1016/j.hal.2014.10.002.

    Article  CAS  Google Scholar 

  • Kasinak, J.-M. E., Holt, B. M., Chislock, M. F., & Wilson, A. E. (2015). Benchtop fluorometry of phycocyanin as a rapid approach for estimating cyanobacterial biovolume. Journal of Plankton Research, 37(1), 248–257. https://doi.org/10.1093/plankt/fbu.096.

    Article  CAS  Google Scholar 

  • Kong, Y., Lou, I., Zhang, Y., Lou, C. U., & Mok, K. M. (2014). Using an online phycocyanin fluorescence probe for rapid monitoring of cyanobacteria on Macau freshwater reservoir. Hydrobiologia, 741(1), 33–49. https://doi.org/10.1007/s10750-013-1759-3.

    Article  CAS  Google Scholar 

  • Kring, S. A., Figary, S. E., Boyer, G. L., Watson, S. B., & Twiss, M. R. (2014). Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: Evaluation of spectral calibration, instrument intercompatibility, and performance range. Canadian Journal of Fisheries and Aquatic Sciences, 71(7), 1087–1095. https://doi.org/10.1139/cjfas-2013-0599.

    Article  Google Scholar 

  • Kudela, R. M., Palacios, S. L., Austerberry, D. C., Accordsi, E. K., Guild, L. S., & Torres-Perez, J. (2015). Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environment, 167, 196–205. https://doi.org/10.1016/j.rse.2015.01.025.

    Article  Google Scholar 

  • Kutser, T. (2009). Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. International Journal of Remote Sensing, 30(17), 4401–4425. https://doi.org/10.1080/01431160802562305.

    Article  Google Scholar 

  • Kutser, T., Metsamaa, L., Strömbeck, N., & Vahtmäe, E. (2006). Monitoring cyanobacterial blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science, 67(1–2), 303–312. https://doi.org/10.1016/j.ecss.2005.11.024.

    Article  Google Scholar 

  • Kutser, T., Metsamaa, L., & Dekker, A. G. (2008). Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuarine, Coastal and Shelf Science, 78(4), 649–654. https://doi.org/10.1016/j.ecss.2008.02.024.

    Article  Google Scholar 

  • Laslett, G. M., Clark, R. M., & Jones, G. J. (1997). Estimating the precision of filamentous blue-green algae cell concentration from a single sample. Environmetrics, 8(4), 313–339. https://doi.org/10.1002/(SICI)1099-095X(199707)8:4<313::AID-ENV253>3.0.CO;2-V.

    Article  Google Scholar 

  • Lunetta, R. S., Schaeffer, B. A., Stumpf, R. P., Keith, D., Jacobs, S. A., & Murphy, M. S. (2015). Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sensing of Environment, 157, 24–34. https://doi.org/10.1016/j.rse.2014.06.008.

    Article  Google Scholar 

  • Macário, I. P. E., Castro, B. B., Nunes, M. I. S., Antunes, S. C., Pizarro, C., Coelho, C., Gonҫalves, F., & de Figueiredo, D. R. (2015). New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria. Hydrobiologia, 757, 155–165. https://doi.org/10.1007/s10750-015-2248-7.

    Article  Google Scholar 

  • Matthews, M. W. (2014). Eutrophication and cyanobacterial blooms in South African inland waters: 10 years of MERIS observations. Remote Sensing of Environment, 155, 161–177. https://doi.org/10.1016/j.rse.2014.08.010.

    Article  Google Scholar 

  • Matthews, M. W., & Bernard, S. (2013). Characterizing the absorption properties for remote sensing of three small optically-diverse South African reservoirs. Remote Sensing, 5(9), 4370–4404. https://doi.org/10.3390/rs5094370.

    Article  Google Scholar 

  • Matthews, M. W., Bernard, S., & Winter, K. (2010). Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sensing of Environment, 114(9), 2070–2087. https://doi.org/10.1016/j.rse.2010.04.013.

    Article  Google Scholar 

  • McGregor, G. B., & Fabbro, L. D. (2001). A guide to the identification of Australian freshwater planktonic Chroococcales (Cyanoprokaryota/Cyanobacteria). Identification guide no. 39. Albury: Cooperative Research Centre for Freshwater Ecology.

    Google Scholar 

  • McQuaid, N., Zamyadi, A., Pévost, M., Bird, D. F., & Dorner, S. (2011). Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source. Journal of Environmental Monitoring, 13(2), 455–463. https://doi.org/10.1039/c0em00163e.

    Article  CAS  Google Scholar 

  • Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59(1), 303–327. https://doi.org/10.1016/j.envint.2013.06.013.

    Article  CAS  Google Scholar 

  • National Health and Medical Research Council. (2008). Guidelines for managing risks in recreational water. Canberra: National Health and Medical Research Council.

    Google Scholar 

  • Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 15(5), 1239–1253. https://doi.org/10.1111/j.1452-2920.2012.02729.x.

    Article  CAS  Google Scholar 

  • Newcombe, G., House, J., Ho, L., Baker, P., & Burch, M. (2010). Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Research report no 74. Adelaide: Water Quality Research Australia.

    Google Scholar 

  • O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacterial blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. https://doi.org/10.1016/j.hal.2011.1.

    Article  Google Scholar 

  • Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363. https://doi.org/10.1016/j.watres.2011.08.002.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climate-induced change. Science of the Total Environment, 409(10), 1739–1745. https://doi.org/10.1016/j.scitotenv.2011.02.001.

    Article  CAS  Google Scholar 

  • Palmer, S. C. J., Kutser, T., & Hunter, P. D. (2015). Remote sensing of inland waters: Challenges, progress and future directions. Remote Sensing of Environment, 157, 1–8. https://doi.org/10.1016/j.rse.2014.09.021.

    Article  Google Scholar 

  • Pápista, É., Ács, É., & Böddi, B. (2002). Chlorophyll-a determination with ethanol—A critical test. Hydrobiologia, 485(1–3), 191–198. https://doi.org/10.1023/A:1021329602685.

    Article  Google Scholar 

  • Pilotto, L. S. (2008). Epidemiology of cyanobacteria and their toxins. In H. K. Hednell (Ed.), Cyanobacterial harmful algal blooms: State of the science and research needs. Dordrecht: Springer. Advances in Experimental Medicine and Biology, 619, pp. 639–649.

  • Prescott, G. W. (1978). How to know the freshwater algae (Third ed.). Dubuque: Wm. C. Brown Company Publishers.

  • Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual, D. L., & Soyeux, E. (2008). Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sensing of Environment, 112(11), 4009–4019. https://doi.org/10.1016/j.rse.2008.06.002.

    Article  Google Scholar 

  • Rijkeboer, M. (2000). Algoritmen voor het bepalen van de concentratie chlropfyl-a and zwevend stof met de Optische Teledetectie Methode in verschillende optische watertypen. Amsterdam: Insituut voor Milieuvraagstukken, VU University (in Dutch).

    Google Scholar 

  • Seppälä, J., Ylöstalo, P., Kaitala, S., Hällfors, S., Raateoja, M., & Maunula, P. (2007). Ship-of-opportunity based phycocyanin fluorescence monitoring of filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science, 73(3–4), 489–500. https://doi.org/10.1016/j.ecss.2007.02.015.

    Article  Google Scholar 

  • Simis, S. (2006). Blue-green catastrophe: remote sensing of mass viral lysis of cyanobacteria. Ph.D. Thesis, Vrije University, Amsterdam. http://dare.ubvu.vu.nl/handle/1871/10641.

  • Simis, S. G. H., Ruiz-Verdú, A., Domínguez-Gómez, J. A., Peña-Martinez, R., Peters, S. W. M., & Gons, H. J. (2007). Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sensing of Environment, 106(4), 414–427. https://doi.org/10.1016/j.rse.2006.09.008.

    Article  Google Scholar 

  • Srivastava, A., Singh, S., Ahn, C.-Y., Oh, H.-M., & Asthana, R. K. (2013). Monitoring approaches for a toxic cyanobacterial bloom. Environmental Science and Technology, 47(16), 8999–9013. https://doi.org/10.1021/es401245k.

    Article  CAS  Google Scholar 

  • Twiss, M. R. (2011). Variations in chromophoric dissolved organic matter and its influence on the use of pigment-specific fluorimeters in the Great Lakes. Journal of Great Lakes Research, 37(1), 124–131. https://doi.org/10.1016/j.jglr.2010.11.011.

    Article  CAS  Google Scholar 

  • Victorian Department of Sustainability and Environment (2007). Biovolume calculator. http://www.depi.vic.gov.au/water/rivers-estuaries-and-wetlands/blue-green-algae/blue-green-algae-resources. Accessed 30 August 2016.

  • Wang, M., Shi, W., & Tang, J. (2011). Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements. Remote Sensing of Environment, 115(3), 841–854. https://doi.org/10.1016/j.rse.2010.11.012.

    Article  Google Scholar 

  • Wynne, T. T., & Stumpf, R. P. (2015). Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in western Lake Erie from 2002–2014. Toxins, 7(5), 1649–1663. https://doi.org/10.3390/toxins7051649.

    Article  CAS  Google Scholar 

  • Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., Fahnenstiel, G. L., Dyble, J., Schwab, D. J., & Joshi, S. J. (2013). Evolution of a cyanobacterial bloom forecast system in western Lake Erie: Development and initial evaluation. Journal of Great Lakes Research, 39(s1), 90–99. https://doi.org/10.1016/j.jglr.2012.10.003.

    Article  Google Scholar 

  • Zamyadi, A., McQuaid, N., Dorner, S., Bird, D. F., Burch, M., Baker, P., Hobson, P., & Prévost, M. (2012a). Cyanobacterial detection using in vivo fluorescence probes: Managing interferences for improved decision-making. Journal of the American Water Works Association, 104(8), E466–E479. https://doi.org/10.5942/jawwa.2012.104.0114.

    Article  Google Scholar 

  • Zamyadi, A., McQuaid, N., Prévost, M., & Dorner, S. (2012b). Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking waters sources. Journal of Environmental Monitoring, 14(2), 579–588. https://doi.org/10.1039/c1em10819k.

    Article  CAS  Google Scholar 

  • Zamyadi, A., Choo, F., Newcombe, G., Stuetz, R., & Henderson, R. K. (2016). A review of monitoring technologies for real-time management of cyanobacteria: Recent advances and future directions. Trends in Analytical Chemistry, 85(A), 83–96. https://doi.org/10.1016/j.trac.2016.06.023.

    Article  CAS  Google Scholar 

  • Zhang, Y., Feng, L., Li, J., Luo, L., Yin, Y., Liu, M., & Li, Y. (2010). Seasonal-spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China. Journal of Plankton Research, 32(7), 1023–1037. https://doi.org/10.1093/plankt/fbq039.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Adam Crawford and Jon Holliday for the microscopic analysis of algal samples, and the DPI Water laboratory for the laboratory Chl-a, turbidity and colour analyses. Botany Bay City Council and Centennial Park Trust are thanked for access to their ponds. Yi Lu provided field assistance on some sampling occasions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee C. Bowling.

Electronic supplementary material

Online Resource 1

(DOCX 1385 kb)

Online Resource 2

(DOCX 5167 kb)

Online Resource 3

(PDF 31 kb)

Online Resource 4

(PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowling, L.C., Shaikh, M., Brayan, J. et al. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes. Environ Monit Assess 189, 495 (2017). https://doi.org/10.1007/s10661-017-6205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6205-y

Keywords

Navigation