Skip to main content

Cyanobacterial Blooms as an Indicator of Environmental Degradation in Waters and Their Monitoring Using Satellite Remote Sensing

  • Chapter
  • First Online:
Aquatic Biodiversity Conservation and Ecosystem Services

Part of the book series: Ecological Research Monographs ((APBON))

Abstract

Cyanobacterial bloom is a major problem in many lakes and rivers around the world even now in the twenty-first century. It has detrimental effects not only on the aquatic environment such as reduced transparency, elevated pH, and oxygen depletion but also on the drinking, agricultural, industrial, commercial, and recreational uses of inland waters. In this chapter, we first review the influence of the harmful cyanobacterial blooms on aquatic fauna and flora such as zooplankton, fish, and aquatic macrophyte. And then we introduce the monitoring of the cyanobacterial bloom using satellite remote sensing. Satellite remote sensing could present a valuable tool to obtain more reliable information about the extent of the cyanobacterial bloom than the conventional monitoring methods such as ship survey. With the rapid development of satellite sensors, many useful algorisms have been proposed by scientists. As one of the methods, we introduce a novel method for monitoring the abundance of the cyanobacterial bloom from Landsat images using an environmental indicator, namely, the visual cyanobacteria index (VCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrantes N, Antunes MJ, Pereira MJ, Goncalves F (2006) Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol 29(1):54–64

    Article  Google Scholar 

  • Aizaki M, Fukushima T, Takagi H, Kitamura H (1995) Evaluation of Lake Kasumigaura, Japan, using a landscape index for cyanobacterial bloom. In: Aizaki M, Fukushima T (eds) Aoko (water-blooms of blue-green algae), Measurement, Occurrence, and Factors on Its Growth. National Institute for Environmental Studies, Tsukuba, pp 33–39 (in Japanese)

    Google Scholar 

  • ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. National water quality management strategy paper No 4. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra

    Google Scholar 

  • Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resources abundance and distribution. Ecology 88(7):1675–1686

    Article  PubMed  Google Scholar 

  • Bartram J, Carmichael WW, Chorus I, Jones G, Skulberg OM (1999) Introduction. In: Chorus I, Bartram J (eds) Toxic Cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 1–14

    Google Scholar 

  • Bresciani M, Vascellari M, Giardino C, Matta E (2012) Remote sensing supports the definition of the water quality status of Lake Omodeo. Eur J Remote Sens 45:349–360

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chen Y, Dai J (2008) Extraction methods of cyanobacteria bloom in Lake Taihu based on RS data. J Lake Sci 20:179–183 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control. Ecol Eng 16(1):51–60

    Article  Google Scholar 

  • Codd GA, Azevedo SMFO, Bagchi SN, Burch MD, Carmichael WW, Harding WR, Kaya K, Utkilen HC (2005) CYANONET: a global network for cyanobacterial bloom and toxin risk management. International Hydrological Programme: Initial Situation Assessment and Recommendations. IHP-VI technical documents in hydrobiology 76. UNESCO, Paris, pp 1–138

    Google Scholar 

  • Colby PJ, Spangler GR, Hurley DA, McCombie AM (1972) Effect of eutrophication on salmonid communities in oligotrophic lakes. J Fish Res Board Can 29(6):975–983

    Article  Google Scholar 

  • Dash P, Walker ND, Mishra DR, Hu C, Pinckney JL, D’Sa EJ (2011) Estimation of cyanobacterial pigments in a freshwater lake using OCM satellite data. Remote Sens Environ 115(12):3409–3423

    Article  Google Scholar 

  • Dawson K (2002) Fish kill events and habitat losses of the Richmond River, NSW Australia: an overview. In: Cooper JAG, Jackson DWT (eds) Proceedings of the ICS meeting, J Coastal Res Special Issue 36:216–221

    Google Scholar 

  • DeMott WR (1989) The role of competition in zooplankton succession. In: Sommer U (ed) Plankton ecology. Springer, Berlin, pp 195–252

    Chapter  Google Scholar 

  • DeMott WR (1999) Foraging strategies and growth inhibition in five daphnids feeding on mixture of a toxic cyanobacterium and green alga. Freshw Biol 42(2):263–274

    Article  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Dokulil M, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiology 438:1–12

    Article  CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Article  Google Scholar 

  • Frey DG (1955) Distribution ecology of the cisco in Indiana. Invest Indiana Lakes Streams 4:177

    Google Scholar 

  • Fulton RS (1988) Resistance to blue-green algal toxins by Bosmina longirostris. J Plankton Res 10(4):771–778

    Article  CAS  Google Scholar 

  • Geurts JJM, Smolders AJP, Verhoeven JTA, Roelofs JGM, Lamers LPM (2008) Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshw Biol 53(10):2101–2116

    Article  CAS  Google Scholar 

  • Gomez JA, Alonso CA, Garcia AA (2011) Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Environ Monit Assess 181(1–4):317–334

    Article  CAS  PubMed  Google Scholar 

  • Gower J, King S, Borstad G, Brown L (2005) Detection of intense plankton blooms using the 709nm band of the MERIS imaging spectrometer. Int J Remote Sens 26(9):2005–2012

    Article  Google Scholar 

  • Havens KE (2007) Cyanobacteria blooms: effects on aquatic ecosystems. In: Hudnell HK (ed) Proceedings of the interagency, International Symposium on Cyanobacterial Harmful Algal Blooms (ISOC-HAB): state of the science and research needs. Springer, New York, pp 733–747

    Google Scholar 

  • Hu C (2009) A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ 113(10):2118–2129

    Article  Google Scholar 

  • Hu C, He M-X (2008) Origin and offshore extent of floating algae in Olympic sailing area. Eos Trans AGU 89(33):302–303

    Article  Google Scholar 

  • Hu C, Chen Z, Clayton TD, Swarzenski P, Brock JC, Muller-Karger FE (2004) Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay. Florida Remote Sens Environ 93(3):423–441

    Article  Google Scholar 

  • Hupfer M, Hilt S (2008) Lake restoration. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 2080–2093

    Chapter  Google Scholar 

  • ILEC/Lake Biwa Research Institute (eds) (1988–1993) Survey of the state of the world’s lakes, vols I–IV. International Lake Environment Committee, Otsu and United Nations Environment Programme, Nairobi

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45(2):201–218

    Article  CAS  Google Scholar 

  • Jones GD (ed) (1994) Cyanobacterial research in Australia (land and water). CSIRO, Australia, pp 731–915

    Google Scholar 

  • Kahru M, Horstmann U, Rud O (1994) Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio 23(8):469–472

    Google Scholar 

  • Kahru M, Savchuk OP, Elmgren R (2007) Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Mar Ecol Prog Ser 343:15–23

    Article  Google Scholar 

  • Klapper H (1991) Control of Eutrophication in Inland waters. Ellis Horwood, London, pp 1–337

    Google Scholar 

  • Kutser T (2004) Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol Oceanogr 49(6):2179–2189

    Article  Google Scholar 

  • Lampert W (1981) Inhibitory and toxic effect of blue-green algae on Daphnia. Rev Ges Hydrobiol 66:285–298

    Article  Google Scholar 

  • Ludsin SA, Kershner MW, Blocksom KA, Knight RL, Stein RA (2001) Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol Appl 11(3):731–746

    Article  Google Scholar 

  • Margalef R (1968) Perspective in ecological theory. University Chicago Press, Chicago, pp 1–111

    Google Scholar 

  • Mason CF, Bryant RJ (1975) Changes in the ecology of the Norfolk Broads. Freshw Biol 5(3):257–270

    Article  Google Scholar 

  • Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652

    Article  Google Scholar 

  • Nürnberg GK (1995) The Anoxic factor, a quantitative measure of anoxia and fish species richness in Central Ontario lakes. Trans Am Fish Soc 124(5):677–686

    Article  Google Scholar 

  • Oyama Y, Fukushima T, Matsushita B, Kamiya K, Kobinata H (2015) Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI). Int J Appl Earth Obstet Geoinf 38:335–348

    Article  Google Scholar 

  • Pizzolon L, Tracanna B, Prósperi C, Guerrero JM (1999) Cyanobacterial bloom in Argentinean inland waters. Lakes Reserv 4:101–105

    Article  Google Scholar 

  • Pretty JN, Mason CF, Nedwell DB, Hine RE, Leaf S, Dils R (2003) Environmental costs of freshwater eutrophication in England and Wales. Environ Sci Technol 37(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Robarts RS (1985) Hypertrophy, a consequence of development. Int J Environ Stud 25:167–175

    Article  Google Scholar 

  • Sayer CD, Davidson TA, Jones JI (2010) Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw Biol 55(3):500–513

    Article  CAS  Google Scholar 

  • Scheffer M, Jeppesen E (1998) In: Jeppesen E, Søndergaard M, Søndergaard M, Hristoffersen K (eds) Alternative stable states. Springer, New York, pp 397–406

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8(8):275–279

    Article  CAS  PubMed  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Amold Publishers, London, pp 1–610

    Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277(5333):1808–1811

    Article  CAS  Google Scholar 

  • Simis SGH, Peters SWM, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50(1):237–245

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Article  PubMed  Google Scholar 

  • Søndergaard M, Phillips G, Hellsten S, Kolada A, Ecke F, Mäemets H, Mjelde M, Azzella MM, Oggioni A (2013) Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704:165–177. doi:10.1007/s10750-012-1389-1

    Article  Google Scholar 

  • Subramaniam A, Brown CW, Hood RR, Carpenter EJ, Capone DG (2002) Detecting Trichodesmium blooms in SeaWiFS imagery. Deep Sea Res Part II 49(1–3):107–121

    Google Scholar 

  • Vincent RK, Qin X, McKay RML, Miner J, Czajkowski K, Savino J, Bridgeman T (2004) Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens Environ 89(3):381–392

    Article  Google Scholar 

  • Wilson MA, Carpenter SR (1999) Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol Appl 9(2):772–783

    Google Scholar 

  • Wynne TT, Stumpf RP, Tomlinson MC, Warner RA, Tester PA, Dyble J, Fahnenstiel GL (2008) Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int J Remote Sens 29(12):3665–3672

    Article  Google Scholar 

  • Yu SZ (1995) Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 10:674–682

    Article  CAS  PubMed  Google Scholar 

  • Zohary T, Breen CM (1989) Environmental factors favouring the formation of Microcystis aeruginosa hyperscums in a hypertrophic lake. Hydrobiology 178:179–192

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Environment Research and Technology Development Fund (S9-4-1) of the Ministry of the Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Oyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Oyama, Y., Matsushita, B., Fukushima, T. (2016). Cyanobacterial Blooms as an Indicator of Environmental Degradation in Waters and Their Monitoring Using Satellite Remote Sensing. In: Nakano, Si., Yahara, T., Nakashizuka, T. (eds) Aquatic Biodiversity Conservation and Ecosystem Services. Ecological Research Monographs(). Springer, Singapore. https://doi.org/10.1007/978-981-10-0780-4_6

Download citation

Publish with us

Policies and ethics