Skip to main content

Advertisement

Log in

Changes of soil thermal and hydraulic regimes in the Heihe River Basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil thermal and hydraulic regimes are critical factors influencing terrestrial processes in cold regions. Collection of field data from frozen ground has occurred at point scales, but limited data exist that characterize changes of soil thermal and hydraulic regimes at the scale of the whole Heihe River Basin. This study uses a long-term regional climate model coupled with land surface model to investigate the soil thermal and hydraulic regime changes at a large spatial scale. It also explores potential factors, including the climate and non-climate factors. Results show that there is significant variability in mean annual air temperature (MAAT) of about 0.47 °C/decade during 1980–2013. A time series of area-averaged mean annual soil temperature (MAST) over the whole Heihe River Basin shows a significant increase between 0.25 and 0.36 °C/decade during 1984–2013, with a net change of 0.9 °C. A trend of increasing wetness is found in soil moisture. Frozen days (FD) decreased significantly both in seasonally frozen ground (SFG) regions and permafrost regions, with a net change between 7 and 13 days during 1984–2013. Freezing index (FI) had a positive effect on FD, while thawing index (TI), MAAT, precipitation, and normalized difference vegetation index (NDVI) had a negative effect. These results are important to understand dynamic mechanisms of soil freeze/thaw cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chang, C., & Hao, X. (2001). Source of N2O emission from a soil during freezing and thawing. Phyton, 41, 49–60.

    CAS  Google Scholar 

  • Chen, Y., Tessier, S., Mackenzie, A. F., & Laverdiere, M. R. (1995). Nitrous oxide emission from an agricultural soil subjected to different freeze-thaw cycles. Agriculture Ecosystems & Environment, 55, 123–128.

    Article  CAS  Google Scholar 

  • Deluca, T. H., Keeney, D. R., & Mccarty, G. W. (1992). Effect of freeze-thaw events on mineralization of soil nitrogen. Biology and Fertility of Soils, 14, 116–120.

    Article  CAS  Google Scholar 

  • Ford, T. W., & Frauenfeld, O. W. (2016). Surface-atmosphere moisture interactions in the frozen ground regions of Eurasia. Scientific Reports, 6, 19163.

    Article  CAS  Google Scholar 

  • Frauenfeld, O. W., & Zhang, T. (2011). An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes. Environmental Research Letters, 6(8), 44024–44031.

    Article  Google Scholar 

  • Gruber, S., Hoelzle, M., & Haeberli, W. (2004). Permafrost thaw and destabilization of alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 311(13), 405–407.

    Google Scholar 

  • Guo, D., & Wang, H. (2016). CMIP5 permafrost degradation projection: a comparison among different regions. Journal of Geophysical Research: Atmospheres, 121, 4499–4517.

    Google Scholar 

  • Harris, M. M., & Safford, O. L. (1996). Effects of season and four tree species on soluble carbon content in fresh and decomposing litter of temperate forests1. Soil Science, 161, 130–135.

    Article  CAS  Google Scholar 

  • Henry, H. A. L. (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Climatic Change, 87, 421–434.

    Article  CAS  Google Scholar 

  • Hinzman, L. D., Kane, D. L., Gieck, R. E., & Everett, K. R. (1991). Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science & Technology, 19, 95–110.

    Article  Google Scholar 

  • Hinzman, L. D., D. J. Goering, T. C. Kinney & S. Li. (1997). Numeric simulation of thermokarst formation during disturbance. Disturbance and Recovery in Arctic Lands.

  • Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., et al. (2005). Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72, 251–298.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013). Climate Change 2013: The physical science basis, in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: T. F. Stocker et al. (Eds.), (pp. 161–162), Cambridge: Cambridge University Press.

  • Jeong, J. H., Kug, J. S., Kim, B. M., Min, S. K., Linderholm, H. W., Ho, C. H., et al. (2012). Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dynamics, 38, 1421–1431.

    Article  Google Scholar 

  • Jiang, Y., Wu, H., Bureau, L. M., & Lishui. (2013). Simulation capabilities of 20 CMIP5 models for annual mean air temperatures in Central Asia. Progressus Inquisitiones De Mutatione Climatis, 9, 110–116.

    Google Scholar 

  • Kane, D. L., Hinzman, L. D., & Zarling, J. P. (1991). Thermal response of the active layer to climatic warming in a permafrost environment. Cold Regions Science & Technology, 19, 111–122.

    Article  Google Scholar 

  • Kaverin, D., G. Mazhitova, A. Pastukhov, and F. Rivkin (2012). The transition layer in permafrost-affected soils, Northeast European Russia. Proc. 10th Int. Conf. on Permafrost, 145–148.

  • Koven, C. D., Riley, W. J., & Stern, A. (2013). Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models. Journal of Climate, 26, 1877–1900.

    Article  Google Scholar 

  • Lan, Y. C., Ding, H. W., Hu, X. L., Shi, M. X., & Ma, Q. (2015). The seasonal change characteristics of temperature, precipitation in the mountain areas of the Heihe River and their regional differences. Mountain Research, 33, 294–302.

    Google Scholar 

  • Larsen, K. S., Jonasson, S., & Michelsen, A. (2002). Repeated freeze–thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21, 187–195.

    Article  Google Scholar 

  • Luo, D., Wu, Q., Jin, H., Marchenko, S. S., Lü, L., & Gao, S. (2016). Recent changes in the active layer thickness across the Northern Hemisphere. Environmental Earth Sciences, 75, 1–15.

    Article  Google Scholar 

  • Melick, D. R., & Seppelt, R. D. (1992). Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycle. Antarctic Science, 4, 399–404.

    Article  Google Scholar 

  • Mu, C., Zhang, T., Wu, Q., Peng, X., Cao, B., Zhang, X., Cao, B., & Cheng, G. (2015). Editorial: organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. The Cryosphere, 9, 479–486.

    Article  Google Scholar 

  • Muller, C., Martin, M., Stevens, R. J., Laughlin, R. J., Kammann, C., Jcg, O., & Jager, H. J. (2002). Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology & Biochemistry, 34, 1325–1331.

    Article  CAS  Google Scholar 

  • Oztas, T., & Fayetorbay, F. (2003). Effect of freezing and thawing processes on soil aggregate stability. Catena, 52, 1–8.

    Article  CAS  Google Scholar 

  • Park, H., Walsh, J., Fedorov, A. N., & Sherstiukov, A. B. (2013). The influence of climate and hydrological variables on opposite anomaly in active layer thickness between Eurasian and North American watersheds. Cryosphere Discussions, 7, 631–645.

    Article  Google Scholar 

  • Park, H., Kim, Y., & Kimball, J. S. (2016). Widespread permafrost vulnerability and soil active layer increases over the high northern latitudes inferred from satellite remote sensing and process model assessments. Remote Sensing of Environment, 175, 349–358.

    Article  Google Scholar 

  • Peng, X. Q., Zhang, T. J., Cao, B., Wang, Q. F., Wang, K., Shao, W. W., & Guo, H. (2016). Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, Western China. Arctic Antarctic & Alpine Research, 48, 161–176.

    Article  Google Scholar 

  • Pepin, N., Bradley, R., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schoner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., Williamson, S. N., & Yang, D. Q. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424–430.

    Article  Google Scholar 

  • Schädel, C., Bader, M. K. F., Schuur, E. A. G., Biasi, C., Bracho, R., Čapek, P., Baets, S. D., Diáková, K., Ernakovich, J., & Estoparagones, C. (2016). Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 6, 950–953.

    Article  Google Scholar 

  • Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., & Lawrence, D. M. (2015). Climate change and the permafrost carbon feedback. Nature, 2015, 171–179.

    Article  Google Scholar 

  • Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337.

    Article  CAS  Google Scholar 

  • Serreze, M. C., Walsh, J. E., Iii, F. S. C., Osterkamp, T., Dyurgerov, M., Romanovsky, V., et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159–207.

    Article  Google Scholar 

  • Shiklomanov, N. I. (2012) Non-climatic factors and long-term, continental-scale changes in seasonally frozen ground. Environmental Research Letters, 7.

  • Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics ☆. Soil & Tillage Research, 79, 7–31.

    Article  Google Scholar 

  • Skogland, T., Lomeland, S., & Goksøyr, J. (1988). Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biology & Biochemistry, 20, 851–856.

    Article  Google Scholar 

  • Slater, A. G., & Lawrence, D. M. (2013). Diagnosing present and future permafrost from climate models. Journal of Climate, 26, 5608–5623.

    Article  Google Scholar 

  • Steiner, A. L., Pal, J. S., Rauscher, S. A., Bell, J. L., Diffenbaugh, N. S., Boone, A., Sloan, L. C., & Giorgi, F. (2009). Land surface coupling in regional climate simulations of the West African monsoon. Climate Dynamics, 33, 869–892.

    Article  Google Scholar 

  • Stieglitz, M., Déry, S. J., Romanovsky, V. E., & Osterkamp, T. E. (2003). The role of snow cover in the warming of arctic permafrost. Geophysical Research Letters, 30, 54–51.

    Article  Google Scholar 

  • Subin, Z. M., Koven, C. D., Riley, W. J., Torn, M. S., Lawrence, D. M., & Swenson, S. C. (2013). Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. Journal of Climate, 26, 3139–3158.

    Article  Google Scholar 

  • Tourre, Y. M., Jarlan, L., Lacaux, J. P., Rotela, C. H., & Lafaye, M. (2008). Spatio-temporal variability of NDVI-precipitation over southernmost South America: possible linkages between climate signals and epidemics. Environmental Research Letters, 3, 52–55.

    Article  Google Scholar 

  • Vaz, R., Edwards, A. C., Shand, C. A., & Cresser, M. S. (1994). Changes in the chemistry of soil solution and acetic-acid extractable P following different types of freeze/thaw episodes. European Journal of Soil Science, 45, 353–359.

    Article  Google Scholar 

  • Wang, F. L., & Bettany, J. R. (1993). Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. Journal of Environmental Quality, 22, 709–714.

    Article  CAS  Google Scholar 

  • Wang, Q. F., Zhang, T. J., Wu, J. C., Peng, X. Q., Zhong, X. Y., Mu, C. C., Wang, K., Wu, Q. B., & Cheng, G. D. (2013a). Permafrost characteristics over the Heihe River Basin in western China. Journal of Food Agriculture & Environment, 11, 1084–1085.

    Google Scholar 

  • Wang, X., Yang, M., Wan, G., Chen, X., & Pang, G. (2013b). Qinghai-Xizang (Tibetan) Plateau climate simulation using the regional climate model RegCM3. Climate Research, 57, 173–186.

    Article  Google Scholar 

  • Wang, K., Zhang, T., & Zhong, X. (2014). Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China. The Cryosphere, 9, 1321–1331.

    Article  Google Scholar 

  • Wu, Q., Zhang, Z., Gao, S., & Ma, W. (2016). Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai–Tibet Plateau, China. The Cryosphere, 10, 1695–1706.

    Article  Google Scholar 

  • Yanai, Y., Toyota, K., & Okazaki, M. (2004). Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils. Soil Science and Plant Nutrition, 50, 821–829.

    Article  Google Scholar 

  • Yi, S., Zhou, Z., Ren, S., Xu, M., Qin, Y., Chen, S., et al. (2011). Effects of permafrost degradation on alpine grassland in a semi-arid basin on the qinghai-tibetan plateau. Environmental Research Letters, 6(4), 45403–45409.

    Article  Google Scholar 

  • Zhang, T. (1996). Some characteristics of the climate in northern Alaska, U.S.A. Arctic & Alpine Research, 28, 509–518.

    Article  Google Scholar 

  • Zhang, T., & Armstrong, R. L. (2001). Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophysical Research Letters, 28, 763–766.

    Article  Google Scholar 

  • Zhang, T., Osterkamp, T. E., & Stamnes, K. (1997). Effects of climate on the active layer and permafrost on the north slope of Alaska, U.S.A. Permafrost and Periglacial Processes, 8, 45–67.

    Article  CAS  Google Scholar 

  • Zhang, Y., W. Chen, S. L. Smith, D. W. Riseborough & J. Cihlar (2005) Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change. Journal of Geophysical Research, 110.

  • Zhao, L., Ping, C. L., Yang, D., Cheng, G., Ding, Y., & Liu, S. (2004). Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Global & Planetary Change, 43, 19–31.

    Article  Google Scholar 

  • Zhao, L., Wu, Q., Marchenko, S., & Sharkhuu, N. (2010). Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafrost and Periglacial Processes, 21, 198–207.

    Article  Google Scholar 

  • Zhao, T. B., Chen, L., & Ma, Z. G. (2014). Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Science Bulletin, 59, 412–429.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 91325202, 41601063), the National Key Scientific Research Program of China (Grant No. 2013CBA01802), and the Fundamental Research Funds for the Central Universities (lzujbky-2015-217). We appreciate the thoughtful input from two anonymous reviewers, whose comments improved this manuscript. The land cover data was obtained from the Environmental and Ecological Science Data Center for West China (http://westdc.westgis.ac.cn/). We acknowledge computing resources and time at the Supercomputing Center of Cold and Arid Region Environment and Engineering Research Institute of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuicui Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Mu, C. Changes of soil thermal and hydraulic regimes in the Heihe River Basin. Environ Monit Assess 189, 483 (2017). https://doi.org/10.1007/s10661-017-6195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6195-9

Keywords

Navigation