Skip to main content
Log in

Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Kordkandi-Duzduzan plain is one of the fertile plains of East Azarbaijan Province, NW of Iran. Groundwater is an important resource for drinking and agricultural purposes due to the lack of surface water resources in the region. The main objectives of the present study are to identify the hydrogeochemical processes and the potential sources of major, minor, and trace metals and metalloids such as Cr, Mn, Cd, Fe, Al, and As by using joint hydrogeochemical techniques and multivariate statistical analysis and to evaluate groundwater quality deterioration with the use of PoS environmental index. To achieve these objectives, 23 groundwater samples were collected in September 2015. Piper diagram shows that the mixed Ca–Mg–Cl is the dominant groundwater type, and some of the samples have Ca–HCO3, Ca–Cl, and Na–Cl types. Multivariate statistical analyses indicate that weathering and dissolution of different rocks and minerals, e.g., silicates, gypsum, and halite, ion exchange, and agricultural activities influence the hydrogeochemistry of the study area. The cluster analysis divides the samples into two distinct clusters which are completely different in EC (and its dependent variables such as Na+, K+, Ca2+, Mg2+, SO4 2−, and Cl), Cd, and Cr variables according to the ANOVA statistical test. Based on the median values, the concentrations of pH, NO3 , SiO2, and As in cluster 1 are elevated compared with those of cluster 2, while their maximum values occur in cluster 2. According to the PoS index, the dominant parameter that controls quality deterioration is As, with 60% of contribution. Samples of lowest PoS values are located in the southern and northern parts (recharge area) while samples of the highest values are located in the discharge area and the eastern part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alizadeh, Z. (2008). Investigation of hydrogeology and hydrogeochemistry of aquifer in Bilverdi- Duzdozan plains. M.Sc. Thesis, Tabriz University. 206 p.

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1990). MINTEQA2\ PRODEFA2. A geochemical model for environmental systems: version 3.0 user’s manual. Athens: US Environmental Protection Agency. Environmental Research Laboratory.

    Google Scholar 

  • Al-Qudah, O., Woocay, A., & Walton, J. (2011). Identification of probable groundwater paths in the Amargosa Desert vicinity. Applied Geochemistry, 26(4), 565–574.

    Article  CAS  Google Scholar 

  • ATSDR. (2011). Detailed data table for the 2011 priority list of hazardous substances. Agency for Toxic Substances and Disease Registry, http://www.atsdr.cdc.gov/spl/ (accessed 20 November 2011).

  • Banoeng-Yakubo, B., Yidana, S. M., & Nti, E. (2009). Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region, Ghana. KSCE Journal of Civil Engineering, 13(1), 55–63.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Kazemian, N. (2015). Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environmental Earth Sciences, 74(1), 297–313.

    Article  CAS  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., Najib, M., Kazemian, N., & Adamowski, J. (2016a). Characterization of hydrogeologic properties of the Tabriz plain multi-layer aquifer system, NW Iran. Arabian Journal of Geosciences, 9, 147.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2016b). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental Earth Sciences, 75, 1486.

    Article  Google Scholar 

  • Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2017a). Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran. Applied Water Science. doi:https://doi.org/10.1007/s13201-017-0550-4.

  • Barzegar, R., Asghari Moghaddam, A., Tziritis, E., Fakhri, M. S., & Soltani, S. (2017b). Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environmental Earth Sciences, 76, 297.

    Article  Google Scholar 

  • Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 29(6), 2073–2089.

    Article  Google Scholar 

  • Bertolo, R., Bourotte, C., Hirata, R., Marcolan, L., & Sracek, O. (2011a). Geochemistry of natural chromium occurrence in a sandstone aquifer in Bauru Basin, São Paulo state, Brazil. Applied Geochemistry, 26(8), 1353–1363.

    Article  CAS  Google Scholar 

  • Bertolo, R., Bourotte, C., Marcolan, L., Oliveira, S., & Hirata, R. (2011b). Anomalous content of chromium in a Cretaceous sandstone aquifer of the Bauru Basin, state of São Paulo, Brazil. Journal of South American Earth Sciences, 31(1), 69–80.

    Article  CAS  Google Scholar 

  • Bharose, R., Lal, S. B., Singh, S. K., & Srivastava, P. K. (2013). Heavy metals pollution in soil-water-vegetation continuum irrigated with ground water and untreated sewage. Bulletin of Environmental and Scientific Research, 2(1), 1–8.

    Google Scholar 

  • Bodrud-Doza, M., Islam, A. R. M. T., Ahmed, F., Das, S., Saha, N., & Rahman, N. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science, 30(1), 19–40.

    Article  Google Scholar 

  • Bohlke, J. K. (2002). Groundwater recharge and agricultural contamination. Hydrogeology Journal, 10(1), 153–179.

    Article  CAS  Google Scholar 

  • Brumelis, G., Lapiņa, L., Nikodemus, O., & Tabors, G. (2000). Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environmental Modelling & Software, 15(8), 755–763.

    Article  Google Scholar 

  • Callender, E. (2004). Heavy metals in the environment-historical trends. In H. D. Holland, & K. K. Turekian (Executive Eds.), Treatise on geochemistry (pp. 67–105), B. S. Lollar (Volume Ed.). Environmental Geochemistry (Vol. 9). Oxford: Elsevier-Pergamon.

  • Chung, S. Y., Venkatramanan, S., Kim, T. H., Kim, D. S., & Ramkumar, T. (2015). Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environment, Development and Sustainability, 17(3), 423–441.

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrologeology (2nd ed.p. 506). New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters: surface and groundwater environments. USA: Prentice-Hall.

    Google Scholar 

  • European Council. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal L 330 of 05.12.1998, pp. 0032–0054.

  • Hassen, I., Hamzaoui-Azaza, F., & Bouhlila, R. (2016). Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment, 188(3), 1–20.

    Article  CAS  Google Scholar 

  • Jalali, M. (2010). Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Environmental Monitoring and Assessment, 166(1–4), 359–369.

    Article  CAS  Google Scholar 

  • Kelepertsis, Α. (2000). Applied geochemistry (in Greek). Athens: Machedonian press 37 pp.

    Google Scholar 

  • Kumaresan, M., & Riyazuddin, P. (2006). Major ion chemistry of environmental samples around sub-urban of Chennai city. Current Science, 91(12), 1668–1677.

    CAS  Google Scholar 

  • Lawrence, F. W., & Upchurch, S. B. (1982). Identification of recharge areas using geochemical factor analysis. Ground Water, 20(6), 680–687.

    Article  CAS  Google Scholar 

  • Lee, S. Y., & Gilkes, R. J. (2005). Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma, 126(1), 59–84.

    Article  CAS  Google Scholar 

  • Lokhande, P. B., Patit, V. V., & Mujawar, H. A. (2008). Multivariate statistical analysis of groundwater in the vicinity of Mahad industrial area of Konkan region, India. International Journal of Applied Environmental Sciences, 3(2), 149–163.

    Google Scholar 

  • Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80–110.

    Google Scholar 

  • Mahlknecht, J. (2003). Estimation of recharge in the Independence aquifer, central Mexico, by combining geochemical and groundwater flow models. PhD Thesis, Institute of Applied Geology, University of Agricultural and Life Sciences (BOKU) Vienna, Austria, 296 p.

  • McKenna, J. E. (2003). An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling & Software, 18(3), 205–220.

    Article  Google Scholar 

  • Molugaram, K., & Rao, G. S. (2017). Statistical techniques for transportation engineering. Oxford: Butterworth-Heinemann, Elsevier Inc.

    Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23(4), 863–894.

    Article  CAS  Google Scholar 

  • Navratil, T., Shanley, J. B., Skřivan, P., Krám, P., Mihaljevič, M., & Drahota, P. (2007). Manganese biogeochemistry in a central Czech Republic catchment. Water, Air, and Soil Pollution, 186(1–4), 149–165.

    Article  CAS  Google Scholar 

  • Nosrati, K., & Van Den Eeckhaut, M. (2012). Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd plain, Iran. Environmental Earth Sciences, 65(1), 331–344.

    Article  CAS  Google Scholar 

  • Oinam, J. D., Ramanathan, A. L., & Jayalakshmi, S. G. (2012). Geochemical and statistical evaluation of groundwater in Imphaland Thoubal district of Manipur, India. Journal of Asian Earth Science, 48, 136–149.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appello, A. A. J. (1999). User's guide to PHREEQC (version 2) – A computer program for speciation, batch reaction, one dimensional transport and inverse geochemical modeling. U.S. Geol. Survey, Water-Resource Invest., pp. 99–4259.

  • Pejman, A. H., Bidhendi, G. N., Karbassi, A. R., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science & Technology, 6(3), 467–476.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Purushothaman, P., Rao, M. S., Rawat, Y. S., Kumar, C. P., Krishan, G., & Parveen, T. (2014). Evaluation of hydrogeochemistry and water quality in Bist-doab region, Punjab, India. Environmental Earth Sciences, 72(3), 693–706.

  • Rogerson, P. (2001). A statistical method for the detection of geographic clustering. Geographical Analysis, 33, 215–227.

  • Sakizadeh, M., & Ahmadpour, E. (2016). Geological impacts on groundwater pollution: A case study in Khuzestan Province. Environmental Earth Sciences, 75(1), 1–12.

    Article  Google Scholar 

  • Sakizadeh, M., Mirzaei, R., & Ghorbani, H. (2016). Geochemical influences on the quality of groundwater in eastern part of Semnan Province, Iran. Environmental Earth Sciences, 75(10), 1–12.

    Article  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., & De Vos, W. (2005). FOREGS Geochemical Atlas of Europe, part 1: Background information, methodology and maps (pp. 526). Espoo: Geological Survey of Finland.

  • Siegel, R. F. (2002). Environmental geochemistry of potentially toxic metals (p. 218). New York: Springer-Verlag Berlin Heidelberg.

    Book  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Singh, D., Han, D., Gautam, S. K., & Pandey, A. C. (2015). Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district, India. Environmental Geochemistry and Health, 37(1), 157–180.

    Article  CAS  Google Scholar 

  • Sivakumar, S., Chandrasekaran, A., Ravisankar, R., Ravikumar, S. M., Prince Prakash Jebakumar, J., & Vijayagopal, P. (2014). Measurements of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu, India using statistical approach. Journal of Taibah University for Science, 8, 375–384.

    Article  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. L. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528.

    Article  CAS  Google Scholar 

  • Srivastava, P. K., Mukherjee, S., Gupta, M., & Singh, S. K. (2011). Characterizing monsoonal variation on water quality index of river Mahi in India using geographical information system. Water Quality, Exposure and Health, 2(3–4), 193–203.

    Article  CAS  Google Scholar 

  • Stamatis, G., Voudouris, K., & Karefilakis, F. (2001). Groundwater pollution by heavy metals in historical mining area of Lavrio, Attica, Greece. Water, Air, and Soil Pollution, 128(1–2), 61–83.

    Article  CAS  Google Scholar 

  • Sullivan, P., Agardy, F. J., & Clark, J. J. (2005). The environmental science of drinking water. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Tziritis, E. (2009). Groundwater and soil geochemistry of the eastern Kopaida region (Beotia, central Greece). Open Geosciences, 1(2), 219–226.

    Article  Google Scholar 

  • Tziritis, E. (2014). Environmental monitoring of micro Prespa Lake basin (western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends. Environmental Monitoring and Assessment, 186(7), 4553–4568.

    Article  CAS  Google Scholar 

  • Tziritis, E., Panagopoulos, A., & Arampatzis, G. (2014). Development of an operational index of water quality (PoS) as a versatile tool to assist groundwater resources management and strategic planning. Journal of Hydrology, 517, 339–350.

    Article  CAS  Google Scholar 

  • Tziritis, E., Arampatzis, G., Hatzigiannakis, E., Panoras, G., Panoras, A., & Panagopoulos, A. (2016a). Quality characteristics and hydrogeochemistry of irrigation waters from three major olive groves in Greece. Desalination and Water Treatment, 57, 11582–11159.

    Article  CAS  Google Scholar 

  • Tziritis, E., Skordas, K., & Kelepertsis, A. (2016b). The use of hydrogeochemical analyses and multivariate statistics for the characterization of groundwater resources in a complex aquifer system. A case study in Amyros River basin, Thessaly, central Greece. Environmental Earth Sciences, 75(4), 1–11.

    Article  CAS  Google Scholar 

  • Tziritis, E., Tzamos, E., Vogiatzis, P., Matzari, C., Kantiranis, N., Filippidis, A., Theodosiou, N., & Fytianos, K. (2016c). Quality assessment and hydrogeochemical status of potable water resources in a suburban area of northern Greece (Thermi municipality, central Macedonia). Desalination and Water Treatment, 57, 11462–11471.

    Article  CAS  Google Scholar 

  • Umar, R., & Absar, A. (2003). Chemical characteristics of groundwater in parts of the Gambhir River basin, Bharatpur District, Rajasthan, India. Environmental Geology, 44(5), 535–544.

    Article  CAS  Google Scholar 

  • Voutsis, N., Kelepertzis, E., Tziritis, E., & Keleprtsis, A. (2015). Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods. Journal of Geochemical Exploration, 159, 79–92.

    Article  CAS  Google Scholar 

  • WHO (2012). Guidance for immunotoxicity risk assessment for chemicals. (IPCS harmonization project document; no. 10). Geneva.

  • Wu, M. L., Wang, Y. S., Su, C. C., Wang, H., Dong, J. D., Yin, J. P., & Han, S. H. (2010). Identification of coastal water quality by statistical analysis methods in Daya bay, South China Sea. Marine Pollution Bulletin, 60(6), 852–860.

    Article  CAS  Google Scholar 

  • Yidana, S. M., Ophori, D., & Banoeng-Yakubo, B. (2008). Groundwater quality evaluation for productive uses—the Afram Plains area, Ghana. Journal of Irrigation and Drainage Engineering, 134(2), 222–227.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge East Azarbaijan Regional Water Authority for providing some data and Water Quality Control Laboratory of the East Azerbaijan Province for the trace element analysis of the water samples. We are grateful to Mr. Morteza Najib for collecting some data. We also appreciate valuable suggestions from the editor and anonymous reviewers for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Barzegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Asghari Moghaddam, A., Barzegar, R. et al. Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index. Environ Monit Assess 189, 455 (2017). https://doi.org/10.1007/s10661-017-6171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6171-4

Keywords

Navigation