Skip to main content

Advertisement

Log in

Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Headwater catchments in the Andes provide critical sources of water for downstream areas with large agricultural communities dependent upon irrigation. Data from such remote headwater catchments are sparse, and there is limited understanding of their hydrological function to guide sustainable water management. Here, we present the findings of repeat synoptic tracer surveys as rapid appraisal tools to understand dominant hydrological flow paths in the semi-arid Rio Grande basin, a 572-km2 headwater tributary of the 11,696-km2 Limarí basin in central Chile. Stable isotopes in stream water show a typical altitudinal effect, with downstream enrichment in δ2H and δ18O ratios. Seasonal signals are displayed in the isotopic composition of the springtime melting season water line with a steeper gradient, whilst evaporative effects are represented by lower seasonal gradients for autumn and summer. Concentrations of solutes indexed by electrical conductivity indicate that there are limited contributions of deeper mineralised groundwater to streamflow and that weathering rates vary in the different sub-catchments. Although simplistic, the insights gained from the study could be used to inform the structure and parameterisation of rainfall runoff models to provide seasonal discharge predictions as an evidence base for decision making in local water management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aravena, R., Suzuki, O., Peña, H., Pollastri, A., Fuenzalida, H., & Grilli, A. (1999). Isotopic composition and origin of the precipitation in northern Chile. Applied Geochemistry, 14, 411–422. doi:10.1016/S0883-2927(98)00067-5.

    Article  CAS  Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. doi:10.1038/nature04141.

    Article  CAS  Google Scholar 

  • Birkel, C., Soulsby, C., & Tetzlaff, D. (2014). Developing a consistent process-based conceptualization of catchment functioning using measurements of internal state variables. Water Resources Research. doi:10.1002/2013WR014925.

  • CNR, Ciren, Comisión Nacional de Riego. 1997. Calculo y cartografía de la evapotranspiración potencial en Chile, http://bibliotecadigital.ciren.cl/gsdlexterna/collect/estudios/index/assoc/ HASH01a7/d06c2417.dir/CNR-0029_1.pdf, accessed on 11.08.2015.

  • Coplen, T. B. (1996). New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochimica et Cosmochimica Acta, 60, 3359.

    Article  CAS  Google Scholar 

  • Döll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38(4).

  • Fritz, P., Silva, C., Suzuki, O., & Salati, E. (1981). Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. Journal of Hydrology, 53, 161–184. doi:10.1016/0022-1694(81)90043-3.

    Article  CAS  Google Scholar 

  • Gat, J. R. (1987). Variability (in time) of the isotopic composition of precipitation: consequences regarding the isotopic composition of hydrologic systems. Isotope techniques in water resource development, IAEA-SM-319/39 (pp. 551–563). Vienna: IAEA.

    Google Scholar 

  • Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., & Aggarwal, P. K. (2015). The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrology and Earth System Sciences, 19, 3419–3431. doi:10.5194/hess-19-3419-2015.

    Article  Google Scholar 

  • Hoke, G. D., Aranibar, J. N., Viale, M., Araneo, D. C., & Llano, C. (2013). Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5_S. Geochemistry, Geophysics, Geosystems, 14. doi:10.1002/ggge.20045.

  • Hublart, P., Ruelland, D., Dezetter, A., & Jourde, D. (2015). Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. Hydrology and Earth System Sciences, 19, 2295–2314. doi:10.5194/hess-19-2295-2015.

    Article  Google Scholar 

  • IAEA, International Atomic Energy Agency/World Meteorological Organization. 2005. Isotope hydrology information system; IAEA/WMO: Vienna, Austria, http://isohis.iaea.org, accessed in 2015.

  • Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9, 126–129. doi:10.1038/ngeo2636.

    Article  CAS  Google Scholar 

  • Kendall, C., & Caldwell, E. A. (1998). Fundamentals of isotope geochemistry. In C. Kendall & J. J. McDonnell (Eds.), Isotope Tracers in Catchment Hydrology (pp. 51–86). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Leibundgut, C., Maloszewski, P., & Külls, C. (2009). Tracers in hydrology. Chichester: John Wiley & Sons Ltd.

    Book  Google Scholar 

  • Lessels, J., Tetzlaff, D., Birkel, C., Dick, J., & Soulsby, C. (2016). Water sources and mixing in riparian areas revealed by tracers and geospatial analysis. Water Resources Research, 52(1), 456–470. doi:10.1002/2015WR017519.

    Article  Google Scholar 

  • MADDTechnologies. http://www.madd.ch/index.php?option=com_deeppockets&task=contShow&id=56& Itemid=318, assessed in 2014.

  • McGuire, K., Torgersen, C., Likens, G., Buso, D., Lowe, W., & Bailey, S. W. (2014). Network analysis reveals multiscale controls on stream water chemistry. Proceedings of the National Academy of Sciences of the United States of America, 111, 7030–7035.

    Article  CAS  Google Scholar 

  • Mook, W. G., Gat, J. R., & Meijer, H. A. J. (2001). Environmental isotopes in the hydrological cycle: principles and applications, v. IV: groundwater—saturated and unsaturated zone technical documents. Hydrology, 39 SC.2001/WS/37.

  • Nauditt, A., Birkel, C., Soulsby, C., & Ribbe, L. (2016). Conceptual modelling to assess the influence of hydroclimatic variability on runoff processes in data scarce semi-arid Andean catchments. Hydrological Sciences Journal. doi:10.1080/02626667.2016.1240870.

  • Ohlanders, N., Rodriguez, M., & McPhee, J. (2013). Stable water isotope variation in a central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 17, 1035–1050. doi:10.5194/hess-17-1035-2013.

    Article  CAS  Google Scholar 

  • Oyarzún, R., et al. (2014). Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrogeology Journal, 22, 1857–1873. doi:10.1007/s10040-014-1170-9.

    Article  Google Scholar 

  • Oyarzún, R., Zambra, S., Maturana, H., Oyarzún, J., Aguirre, E., & Kretschmer, N. (2016). Chemical and isotopic assessment of surface water–shallow groundwater interaction in the arid Grande river basin, North-Central Chile. Hydrological Sciences Journal, 61(12), 2193–2204. doi:10.1080/02626667.2015.1093635.

    Article  Google Scholar 

  • Price, M. F., & Egan, P. A. (2014). Policy brief: our global water towers: ensuring ecosystem services from mountains under climate change. Paris: UNESCO.

    Google Scholar 

  • Rozanski, K., & Araguás, L. (1995). Spatial and temporal variability of stable isotope composition over the South American continent. Bulletin de l'Institut français d'études andines, 24, 379–390.

    Google Scholar 

  • Rusman, A. (2014). Hydrogeological assessment in the high Andean cordillera, North Central Chile. MSc Thesis at the Department of Geosciences at the University of Darmstadt.

  • Siegenthaler, U., & Oeschger, H. (1980). Correlation of 18O in precipitation with temperature and altitudes. Nature, 285, 314–318.

    Article  CAS  Google Scholar 

  • Soulsby, C., Rodgers, P., Smart, R., Dawson, J., & Dunn, S. (2003). A tracer-based assessment of hydrological pathways at different spatial scales in a mesoscale Scottish catchment. Hydrological Processes, 17, 759–777. doi:10.1002/hyp.1163.

    Article  Google Scholar 

  • Soulsby, C., Tetzlaff, D., & Hrachowitz, M. (2009). Tracers and transit times: windows for viewing catchment scale storage? Hydrological Processes, 23, 3503–3507. doi:10.1002/hyp.7501.

    Article  Google Scholar 

  • Soulsby, C., Birkel, C., Tetzlaff, D., & Dunn, S. M. (2011). Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. Journal of Hydrology, 333, 199–213. doi:10.1016/j.jhydrol.2006.08.016.

    Article  Google Scholar 

  • Souvignet, M., Oyarzún, R., Koen, M., Verbist, J., Gaese, H., & Heinrich, J. (2012). Hydro-meteorological trends in semi-arid North-Central Chile (29-32° S): water resources implications for a fragile Andean region. Hydrological Sciences Journal, 57(3), 479–495. doi:10.1080/02626667.2012.665607.

    Article  Google Scholar 

  • Sprenger, M., Tetzlaff, D., Tunaley, C., Dick, J., Soulsby, C. (2017). Evaporation fractionation in a peatland drainage network affects stream water isotope composition, Water Resources Research, 53, 851–866. doi:10.1002/2016WR019258.

  • Squeo, F. A., Barry, G., Warner, R. A., & Espinoza, D. (2006). Bofedales: high altitude peatlands of the central Andes Bofedales: turberas de alta montaña de los Andes centrales. Revista Chilena de Historia Natural, 79(245–255), 2006.

    Google Scholar 

  • Vicuña, S., Garreaud, R. D., & McPhee, J. (2011). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 105(3), 469–488. doi:10.1007/s10584-010-9888-4.

    Article  Google Scholar 

  • Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., & Weingartner, R. (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resources Research, 43(7), W07447. doi:10.1029/2006WR005653.

    Article  Google Scholar 

  • Vogel, J. C., Lerman, J. C., & Mook, W. G. (1975). Natural isotopes in surface and groundwater from Argentina. Hydrological Sciences Bulletin, 20, 203–221.

    Google Scholar 

  • Vuille, M., E. Franquist, R. Garreaud, W. Lavado, B. Caceres (2015). Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research, 120(9), 3745–3757. doi:10.1002/2015JD023126.

  • Windhorst, D., Waltz, T., Timbe, E., Frede, H. G., & Breuer, L. (2013). Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrology and Earth System Sciences, 17(1), 409–419. doi:10.5194/hess-17-409-2013.

    Article  Google Scholar 

  • Zimmer, M. A., Bailey, S. W., McGuire, K. J., & Bullen, T. D. (2013). Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network. Hydrological Processes, 27, 3438–3451. doi:10.1002/hyp.9449.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for field visits was provided by the BMBF (German Federal Ministry for Education and Research) in the scope of the research projects “Web based drought information system” and “Increasing water use efficiency in irrigation management” (2012–2014). We especially thank our local project partners from the University of La Serena: Pablo Álvarez, Fabián Reyes and Nicole Kretschmer from the Centre for Advanced Studies in Arid Regions (CEAZA). Their support and hospitality were of key importance to be able to carry out the sampling campaigns. We also thank Christoph Schüth, head of the Institute for Applied Geosciences of the University of Darmstadt, to let us use the laboratory and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Nauditt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauditt, A., Soulsby, C., Birkel, C. et al. Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile. Environ Monit Assess 189, 440 (2017). https://doi.org/10.1007/s10661-017-6149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6149-2

Keywords

Navigation